mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
17 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c6c3882dc1 | ||
|
|
512b52bd78 | ||
|
|
147c156c8a | ||
|
|
40843bcc21 | ||
|
|
00e07b7d61 | ||
|
|
0069857cf8 | ||
|
|
580274be79 | ||
|
|
848e8a480a | ||
|
|
cc58f75474 | ||
|
|
3b2cf7b0bc | ||
|
|
984d62a373 | ||
|
|
683dd98b96 | ||
|
|
067ac323da | ||
|
|
91c8d1ca13 | ||
|
|
08238a7200 | ||
|
|
7166ad6711 | ||
|
|
fbba0f9aaf |
@@ -1,3 +1,10 @@
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
if version.parse(torch.__version__) >= version.parse('2.0.0'):
|
||||
from einops._torch_specific import allow_ops_in_compiled_graph
|
||||
allow_ops_in_compiled_graph()
|
||||
|
||||
from dalle2_pytorch.version import __version__
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter, OpenClipAdapter
|
||||
|
||||
@@ -12,10 +12,8 @@ from torch.utils.checkpoint import checkpoint
|
||||
from torch import nn, einsum
|
||||
import torchvision.transforms as T
|
||||
|
||||
from einops import rearrange, repeat, reduce
|
||||
from einops import rearrange, repeat, reduce, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
from einops_exts import rearrange_many, repeat_many, check_shape
|
||||
from einops_exts.torch import EinopsToAndFrom
|
||||
|
||||
from kornia.filters import gaussian_blur2d
|
||||
import kornia.augmentation as K
|
||||
@@ -360,6 +358,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
text_mask = text_mask & (text != 0)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
@@ -434,6 +433,7 @@ class OpenClipAdapter(BaseClipAdapter):
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
text_mask = text_mask & (text != 0)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
@@ -629,7 +629,7 @@ class NoiseScheduler(nn.Module):
|
||||
|
||||
def calculate_v(self, x_start, t, noise = None):
|
||||
return (
|
||||
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise +
|
||||
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise -
|
||||
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * x_start
|
||||
)
|
||||
|
||||
@@ -667,6 +667,23 @@ class NoiseScheduler(nn.Module):
|
||||
return loss
|
||||
return loss * extract(self.p2_loss_weight, times, loss.shape)
|
||||
|
||||
# rearrange image to sequence
|
||||
|
||||
class RearrangeToSequence(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x):
|
||||
x = rearrange(x, 'b c ... -> b ... c')
|
||||
x, ps = pack([x], 'b * c')
|
||||
|
||||
x = self.fn(x)
|
||||
|
||||
x, = unpack(x, ps, 'b * c')
|
||||
x = rearrange(x, 'b ... c -> b c ...')
|
||||
return x
|
||||
|
||||
# diffusion prior
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
@@ -865,7 +882,7 @@ class Attention(nn.Module):
|
||||
|
||||
# add null key / value for classifier free guidance in prior net
|
||||
|
||||
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b 1 d', b = b)
|
||||
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
@@ -1122,7 +1139,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
|
||||
|
||||
if self.self_cond:
|
||||
learned_queries = torch.cat((image_embed, self_cond), dim = -2)
|
||||
learned_queries = torch.cat((self_cond, learned_queries), dim = -2)
|
||||
|
||||
tokens = torch.cat((
|
||||
text_encodings,
|
||||
@@ -1320,7 +1337,7 @@ class DiffusionPrior(nn.Module):
|
||||
elif self.predict_x_start:
|
||||
x_start = pred
|
||||
else:
|
||||
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred_noise)
|
||||
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred)
|
||||
|
||||
# clip x0 before maybe predicting noise
|
||||
|
||||
@@ -1332,10 +1349,7 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
# predict noise
|
||||
|
||||
if self.predict_x_start or self.predict_v:
|
||||
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
|
||||
else:
|
||||
pred_noise = pred
|
||||
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
|
||||
|
||||
if time_next < 0:
|
||||
image_embed = x_start
|
||||
@@ -1630,14 +1644,10 @@ class ResnetBlock(nn.Module):
|
||||
self.cross_attn = None
|
||||
|
||||
if exists(cond_dim):
|
||||
self.cross_attn = EinopsToAndFrom(
|
||||
'b c h w',
|
||||
'b (h w) c',
|
||||
CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
self.cross_attn = CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
|
||||
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
|
||||
@@ -1656,8 +1666,15 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
if exists(self.cross_attn):
|
||||
assert exists(cond)
|
||||
|
||||
h = rearrange(h, 'b c ... -> b ... c')
|
||||
h, ps = pack([h], 'b * c')
|
||||
|
||||
h = self.cross_attn(h, context = cond) + h
|
||||
|
||||
h, = unpack(h, ps, 'b * c')
|
||||
h = rearrange(h, 'b ... c -> b c ...')
|
||||
|
||||
h = self.block2(h)
|
||||
return h + self.res_conv(x)
|
||||
|
||||
@@ -1703,11 +1720,11 @@ class CrossAttention(nn.Module):
|
||||
|
||||
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
||||
|
||||
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
|
||||
|
||||
# add null key / value for classifier free guidance in prior net
|
||||
|
||||
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b)
|
||||
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
||||
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
@@ -1760,7 +1777,7 @@ class LinearAttention(nn.Module):
|
||||
|
||||
fmap = self.norm(fmap)
|
||||
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
||||
q, k, v = rearrange_many((q, k, v), 'b (h c) x y -> (b h) (x y) c', h = h)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
||||
|
||||
q = q.softmax(dim = -1)
|
||||
k = k.softmax(dim = -2)
|
||||
@@ -1994,7 +2011,7 @@ class Unet(nn.Module):
|
||||
|
||||
self_attn = cast_tuple(self_attn, num_stages)
|
||||
|
||||
create_self_attn = lambda dim: EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(dim, **attn_kwargs)))
|
||||
create_self_attn = lambda dim: RearrangeToSequence(Residual(Attention(dim, **attn_kwargs)))
|
||||
|
||||
# resnet block klass
|
||||
|
||||
@@ -2494,7 +2511,7 @@ class Decoder(nn.Module):
|
||||
dynamic_thres_percentile = 0.95,
|
||||
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
||||
p2_loss_weight_k = 1,
|
||||
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
|
||||
ddim_sampling_eta = 0. # can be set to 0. for deterministic sampling afaict
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -2728,11 +2745,16 @@ class Decoder(nn.Module):
|
||||
if exists(unet_number):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
# devices
|
||||
|
||||
cuda, cpu = torch.device('cuda'), torch.device('cpu')
|
||||
|
||||
self.cuda()
|
||||
|
||||
devices = [module_device(unet) for unet in self.unets]
|
||||
self.unets.cpu()
|
||||
unet.cuda()
|
||||
|
||||
self.unets.to(cpu)
|
||||
unet.to(cuda)
|
||||
|
||||
yield
|
||||
|
||||
@@ -2973,10 +2995,7 @@ class Decoder(nn.Module):
|
||||
|
||||
# predict noise
|
||||
|
||||
if predict_x_start or predict_v:
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = x_start)
|
||||
else:
|
||||
pred_noise = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = x_start)
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
@@ -3118,7 +3137,8 @@ class Decoder(nn.Module):
|
||||
distributed = False,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
inpaint_resample_times = 5,
|
||||
one_unet_in_gpu_at_time = True
|
||||
):
|
||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||
|
||||
@@ -3141,6 +3161,7 @@ class Decoder(nn.Module):
|
||||
assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size)
|
||||
prev_unet_output_size = self.image_sizes[start_at_unet_number - 2]
|
||||
img = resize_image_to(image, prev_unet_output_size, nearest = True)
|
||||
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
num_unets = self.num_unets
|
||||
@@ -3150,7 +3171,7 @@ class Decoder(nn.Module):
|
||||
if unet_number < start_at_unet_number:
|
||||
continue # It's the easiest way to do it
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and one_unet_in_gpu_at_time else null_context()
|
||||
|
||||
with context:
|
||||
# prepare low resolution conditioning for upsamplers
|
||||
@@ -3227,7 +3248,7 @@ class Decoder(nn.Module):
|
||||
learned_variance = self.learned_variance[unet_index]
|
||||
b, c, h, w, device, = *image.shape, image.device
|
||||
|
||||
check_shape(image, 'b c h w', c = self.channels)
|
||||
assert image.shape[1] == self.channels
|
||||
assert h >= target_image_size and w >= target_image_size
|
||||
|
||||
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
|
||||
|
||||
@@ -1,14 +1,16 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from pydantic import BaseModel, validator, model_validator
|
||||
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
|
||||
|
||||
from x_clip import CLIP as XCLIP
|
||||
from open_clip import list_pretrained
|
||||
from coca_pytorch import CoCa
|
||||
|
||||
from dalle2_pytorch.dalle2_pytorch import (
|
||||
CoCaAdapter,
|
||||
OpenAIClipAdapter,
|
||||
OpenClipAdapter,
|
||||
Unet,
|
||||
Decoder,
|
||||
DiffusionPrior,
|
||||
@@ -36,12 +38,12 @@ class TrainSplitConfig(BaseModel):
|
||||
val: float = 0.15
|
||||
test: float = 0.1
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, fields):
|
||||
actual_sum = sum([*fields.values()])
|
||||
@model_validator(mode = 'after')
|
||||
def validate_all(self, m):
|
||||
actual_sum = sum([*dict(self).values()])
|
||||
if actual_sum != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0. Found: {actual_sum}')
|
||||
return fields
|
||||
raise ValueError(f'{dict(self).keys()} must sum to 1.0. Found: {actual_sum}')
|
||||
return self
|
||||
|
||||
class TrackerLogConfig(BaseModel):
|
||||
log_type: str = 'console'
|
||||
@@ -57,6 +59,7 @@ class TrackerLogConfig(BaseModel):
|
||||
kwargs = self.dict()
|
||||
return create_logger(self.log_type, data_path, **kwargs)
|
||||
|
||||
|
||||
class TrackerLoadConfig(BaseModel):
|
||||
load_from: Optional[str] = None
|
||||
only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming
|
||||
@@ -87,7 +90,7 @@ class TrackerConfig(BaseModel):
|
||||
data_path: str = '.tracker_data'
|
||||
overwrite_data_path: bool = False
|
||||
log: TrackerLogConfig
|
||||
load: Optional[TrackerLoadConfig]
|
||||
load: Optional[TrackerLoadConfig] = None
|
||||
save: Union[List[TrackerSaveConfig], TrackerSaveConfig]
|
||||
|
||||
def create(self, full_config: BaseModel, extra_config: dict, dummy_mode: bool = False) -> Tracker:
|
||||
@@ -112,11 +115,15 @@ class TrackerConfig(BaseModel):
|
||||
class AdapterConfig(BaseModel):
|
||||
make: str = "openai"
|
||||
model: str = "ViT-L/14"
|
||||
base_model_kwargs: Dict[str, Any] = None
|
||||
base_model_kwargs: Optional[Dict[str, Any]] = None
|
||||
|
||||
def create(self):
|
||||
if self.make == "openai":
|
||||
return OpenAIClipAdapter(self.model)
|
||||
elif self.make == "open_clip":
|
||||
pretrained = dict(list_pretrained())
|
||||
checkpoint = pretrained[self.model]
|
||||
return OpenClipAdapter(name=self.model, pretrained=checkpoint)
|
||||
elif self.make == "x-clip":
|
||||
return XClipAdapter(XCLIP(**self.base_model_kwargs))
|
||||
elif self.make == "coca":
|
||||
@@ -127,8 +134,8 @@ class AdapterConfig(BaseModel):
|
||||
class DiffusionPriorNetworkConfig(BaseModel):
|
||||
dim: int
|
||||
depth: int
|
||||
max_text_len: int = None
|
||||
num_timesteps: int = None
|
||||
max_text_len: Optional[int] = None
|
||||
num_timesteps: Optional[int] = None
|
||||
num_time_embeds: int = 1
|
||||
num_image_embeds: int = 1
|
||||
num_text_embeds: int = 1
|
||||
@@ -151,7 +158,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
|
||||
return DiffusionPriorNetwork(**kwargs)
|
||||
|
||||
class DiffusionPriorConfig(BaseModel):
|
||||
clip: AdapterConfig = None
|
||||
clip: Optional[AdapterConfig] = None
|
||||
net: DiffusionPriorNetworkConfig
|
||||
image_embed_dim: int
|
||||
image_size: int
|
||||
@@ -188,7 +195,7 @@ class DiffusionPriorTrainConfig(BaseModel):
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.99
|
||||
amp: bool = False
|
||||
warmup_steps: int = None # number of warmup steps
|
||||
warmup_steps: Optional[int] = None # number of warmup steps
|
||||
save_every_seconds: int = 3600 # how often to save
|
||||
eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with
|
||||
best_validation_loss: float = 1e9 # the current best valudation loss observed
|
||||
@@ -221,10 +228,10 @@ class TrainDiffusionPriorConfig(BaseModel):
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple[int]
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
image_embed_dim: Optional[int] = None
|
||||
text_embed_dim: Optional[int] = None
|
||||
cond_on_text_encodings: Optional[bool] = None
|
||||
cond_dim: Optional[int] = None
|
||||
channels: int = 3
|
||||
self_attn: ListOrTuple[int]
|
||||
attn_dim_head: int = 32
|
||||
@@ -236,14 +243,14 @@ class UnetConfig(BaseModel):
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple[UnetConfig]
|
||||
image_size: int = None
|
||||
image_size: Optional[int] = None
|
||||
image_sizes: ListOrTuple[int] = None
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: ListOrTuple[str] = None # None means all cosine
|
||||
beta_schedule: Optional[ListOrTuple[str]] = None # None means all cosine
|
||||
learned_variance: SingularOrIterable[bool] = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
@@ -271,9 +278,9 @@ class DecoderConfig(BaseModel):
|
||||
extra = "allow"
|
||||
|
||||
class DecoderDataConfig(BaseModel):
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
img_embeddings_url: Optional[str] # path to .npy files with embeddings
|
||||
text_embeddings_url: Optional[str] # path to .npy files with embeddings
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
img_embeddings_url: Optional[str] = None # path to .npy files with embeddings
|
||||
text_embeddings_url: Optional[str] = None # path to .npy files with embeddings
|
||||
num_workers: int = 4
|
||||
batch_size: int = 64
|
||||
start_shard: int = 0
|
||||
@@ -313,20 +320,20 @@ class DecoderTrainConfig(BaseModel):
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
device: str = 'cuda:0'
|
||||
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: int = None # Same as above but for validation.
|
||||
epoch_samples: Optional[int] = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: Optional[int] = None # Same as above but for validation.
|
||||
save_immediately: bool = False
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
|
||||
unet_training_mask: Optional[ListOrTuple[bool]] = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
FID: Dict[str, Any] = None
|
||||
IS: Dict[str, Any] = None
|
||||
KID: Dict[str, Any] = None
|
||||
LPIPS: Dict[str, Any] = None
|
||||
FID: Optional[Dict[str, Any]] = None
|
||||
IS: Optional[Dict[str, Any]] = None
|
||||
KID: Optional[Dict[str, Any]] = None
|
||||
LPIPS: Optional[Dict[str, Any]] = None
|
||||
|
||||
class TrainDecoderConfig(BaseModel):
|
||||
decoder: DecoderConfig
|
||||
@@ -340,11 +347,14 @@ class TrainDecoderConfig(BaseModel):
|
||||
def from_json_path(cls, json_path):
|
||||
with open(json_path) as f:
|
||||
config = json.load(f)
|
||||
print(config)
|
||||
return cls(**config)
|
||||
|
||||
@root_validator
|
||||
def check_has_embeddings(cls, values):
|
||||
@model_validator(mode = 'after')
|
||||
def check_has_embeddings(self, m):
|
||||
# Makes sure that enough information is provided to get the embeddings specified for training
|
||||
values = dict(self)
|
||||
|
||||
data_config, decoder_config = values.get('data'), values.get('decoder')
|
||||
|
||||
if not exists(data_config) or not exists(decoder_config):
|
||||
@@ -369,4 +379,4 @@ class TrainDecoderConfig(BaseModel):
|
||||
if text_emb_url:
|
||||
assert using_text_embeddings, "Text embeddings are being loaded, but text embeddings are not being conditioned on. This will slow down the dataloader for no reason."
|
||||
|
||||
return values
|
||||
return m
|
||||
|
||||
@@ -236,7 +236,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
)
|
||||
|
||||
if exists(cosine_decay_max_steps):
|
||||
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
|
||||
self.scheduler = CosineAnnealingLR(self.optimizer, T_max = cosine_decay_max_steps)
|
||||
else:
|
||||
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.11.0'
|
||||
__version__ = '1.15.3'
|
||||
|
||||
@@ -11,8 +11,7 @@ import torch.nn.functional as F
|
||||
from torch.autograd import grad as torch_grad
|
||||
import torchvision
|
||||
|
||||
from einops import rearrange, reduce, repeat
|
||||
from einops_exts import rearrange_many
|
||||
from einops import rearrange, reduce, repeat, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# constants
|
||||
@@ -408,7 +407,7 @@ class Attention(nn.Module):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
||||
|
||||
q = q * self.scale
|
||||
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
|
||||
8
setup.py
8
setup.py
@@ -26,17 +26,17 @@ setup(
|
||||
install_requires=[
|
||||
'accelerate',
|
||||
'click',
|
||||
'clip-anytorch>=2.4.0',
|
||||
'open-clip-torch>=2.0.0,<3.0.0',
|
||||
'clip-anytorch>=2.5.2',
|
||||
'coca-pytorch>=0.0.5',
|
||||
'ema-pytorch>=0.0.7',
|
||||
'einops>=0.4',
|
||||
'einops-exts>=0.0.3',
|
||||
'einops>=0.6.1',
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'packaging',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'pydantic>=2',
|
||||
'pytorch-warmup',
|
||||
'resize-right>=0.0.2',
|
||||
'rotary-embedding-torch',
|
||||
|
||||
@@ -577,6 +577,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
shards_per_process = len(all_shards) // world_size
|
||||
assert shards_per_process > 0, "Not enough shards to split evenly"
|
||||
my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process]
|
||||
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=my_shards,
|
||||
img_preproc = config.data.img_preproc,
|
||||
|
||||
Reference in New Issue
Block a user