Compare commits

...

23 Commits
1.10.9 ... main

Author SHA1 Message Date
lucidrains
680dfc4d93 yet more pydantic v2 stuff 2023-10-19 07:40:57 -07:00
lucidrains
b6fecae91a fix another pydantic 2 migration error 2023-10-18 21:07:47 -07:00
lucidrains
dab2f74650 fix self_attn type on unetconfig 2023-10-18 21:02:50 -07:00
lucidrains
1e173f4c66 more fixes to config 2023-10-18 20:27:32 -07:00
lucidrains
410a6144e1 new einops is torch compile friendly 2023-10-18 15:45:09 -07:00
lucidrains
c6c3882dc1 fix all optional types in train config 2023-10-07 11:34:34 -07:00
Phil Wang
512b52bd78 1.15.2 2023-10-04 09:38:46 -07:00
Neil Kim Nielsen
147c156c8a Make TrackerLoadConfig optional (#306) 2023-10-04 09:38:30 -07:00
Phil Wang
40843bcc21 pydantic 2 2023-07-15 09:32:44 -07:00
Phil Wang
00e07b7d61 force einops 0.6.1 or greater and call allow_ops_in_compiled_graph 2023-04-20 14:08:52 -07:00
Phil Wang
0069857cf8 remove einops exts for better pytorch 2.0 compile compatibility 2023-04-20 07:05:29 -07:00
Phil Wang
580274be79 use .to(device) to avoid copy, within one_unet_in_gpu context 2023-03-07 12:41:55 -08:00
Phil Wang
848e8a480a always rederive the predicted noise from the clipped x0 for ddim + predict noise objective 2023-03-05 10:45:44 -08:00
Phil Wang
cc58f75474 bump to newer package of clip-anytorch that allows for text encodings < maximum context length 2023-03-04 09:37:25 -08:00
Phil Wang
3b2cf7b0bc fix for self conditioning in diffusion prior network https://github.com/lucidrains/DALLE2-pytorch/issues/273 2023-02-11 17:18:40 -08:00
Phil Wang
984d62a373 default ddim sampling eta to 0 2022-12-23 13:23:09 -08:00
Phil Wang
683dd98b96 extra insurance in case eos id is not there 2022-12-15 10:54:21 -08:00
Phil Wang
067ac323da address https://github.com/lucidrains/DALLE2-pytorch/issues/266 2022-11-23 08:41:25 -08:00
zion
91c8d1ca13 bug fix cosine annealing optimizer in prior trainer (#262) 2022-11-11 12:15:13 -08:00
zion
08238a7200 depend on open-clip-torch (#261)
fix the previous commit which assumes open_clip is installed
2022-11-07 16:19:08 -08:00
zion
7166ad6711 add open clip to train_config (#260)
add the ability to use open_clip in the train configs (useful for the new SOTA h/14 model)
2022-11-07 15:44:36 -08:00
Phil Wang
fbba0f9aaf bring in prediction of v objective, combining the findings from progressive distillation paper and imagen-video to the eventual extension of dalle2 to make-a-video 2022-10-28 18:21:07 -07:00
Romain Beaumont
9f37705d87 Add static graph param (#226)
* Add static graph param

* use static graph param
2022-10-25 19:31:29 +02:00
9 changed files with 177 additions and 93 deletions

View File

@@ -1298,4 +1298,14 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@article{Salimans2022ProgressiveDF,
title = {Progressive Distillation for Fast Sampling of Diffusion Models},
author = {Tim Salimans and Jonathan Ho},
journal = {ArXiv},
year = {2022},
volume = {abs/2202.00512}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -9,7 +9,7 @@
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 16,
"attn_heads": 4,
"self_attn": [false, true, true, true]
"self_attn": [false, true, true, true]
}
],
"clip": {

View File

@@ -12,10 +12,8 @@ from torch.utils.checkpoint import checkpoint
from torch import nn, einsum
import torchvision.transforms as T
from einops import rearrange, repeat, reduce
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
from kornia.filters import gaussian_blur2d
import kornia.augmentation as K
@@ -360,6 +358,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
text_mask = text_mask & (text != 0)
assert not self.cleared
text_embed = self.clip.encode_text(text)
@@ -434,6 +433,7 @@ class OpenClipAdapter(BaseClipAdapter):
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
text_mask = text_mask & (text != 0)
assert not self.cleared
text_embed = self.clip.encode_text(text)
@@ -619,7 +619,7 @@ class NoiseScheduler(nn.Module):
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def q_sample(self, x_start, t, noise=None):
def q_sample(self, x_start, t, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
@@ -627,6 +627,12 @@ class NoiseScheduler(nn.Module):
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def calculate_v(self, x_start, t, noise = None):
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * x_start
)
def q_sample_from_to(self, x_from, from_t, to_t, noise = None):
shape = x_from.shape
noise = default(noise, lambda: torch.randn_like(x_from))
@@ -638,6 +644,12 @@ class NoiseScheduler(nn.Module):
return x_from * (alpha_next / alpha) + noise * (sigma_next * alpha - sigma * alpha_next) / alpha
def predict_start_from_v(self, x_t, t, v):
return (
extract(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
@@ -655,6 +667,23 @@ class NoiseScheduler(nn.Module):
return loss
return loss * extract(self.p2_loss_weight, times, loss.shape)
# rearrange image to sequence
class RearrangeToSequence(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
x = rearrange(x, 'b c ... -> b ... c')
x, ps = pack([x], 'b * c')
x = self.fn(x)
x, = unpack(x, ps, 'b * c')
x = rearrange(x, 'b ... c -> b c ...')
return x
# diffusion prior
class LayerNorm(nn.Module):
@@ -853,7 +882,7 @@ class Attention(nn.Module):
# add null key / value for classifier free guidance in prior net
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b 1 d', b = b)
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
@@ -1110,7 +1139,7 @@ class DiffusionPriorNetwork(nn.Module):
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
if self.self_cond:
learned_queries = torch.cat((image_embed, self_cond), dim = -2)
learned_queries = torch.cat((self_cond, learned_queries), dim = -2)
tokens = torch.cat((
text_encodings,
@@ -1146,6 +1175,7 @@ class DiffusionPrior(nn.Module):
image_cond_drop_prob = None,
loss_type = "l2",
predict_x_start = True,
predict_v = False,
beta_schedule = "cosine",
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
sampling_clamp_l2norm = False, # whether to l2norm clamp the image embed at each denoising iteration (analogous to -1 to 1 clipping for usual DDPMs)
@@ -1197,6 +1227,7 @@ class DiffusionPrior(nn.Module):
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
self.predict_x_start = predict_x_start
self.predict_v = predict_v # takes precedence over predict_x_start
# @crowsonkb 's suggestion - https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
@@ -1226,7 +1257,9 @@ class DiffusionPrior(nn.Module):
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, self_cond = self_cond, **text_cond)
if self.predict_x_start:
if self.predict_v:
x_start = self.noise_scheduler.predict_start_from_v(x, t = t, v = pred)
elif self.predict_x_start:
x_start = pred
else:
x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
@@ -1299,10 +1332,12 @@ class DiffusionPrior(nn.Module):
# derive x0
if self.predict_x_start:
if self.predict_v:
x_start = self.noise_scheduler.predict_start_from_v(image_embed, t = time_cond, v = pred)
elif self.predict_x_start:
x_start = pred
else:
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred_noise)
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred)
# clip x0 before maybe predicting noise
@@ -1314,10 +1349,7 @@ class DiffusionPrior(nn.Module):
# predict noise
if self.predict_x_start:
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
else:
pred_noise = pred
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
if time_next < 0:
image_embed = x_start
@@ -1372,7 +1404,12 @@ class DiffusionPrior(nn.Module):
if self.predict_x_start and self.training_clamp_l2norm:
pred = self.l2norm_clamp_embed(pred)
target = noise if not self.predict_x_start else image_embed
if self.predict_v:
target = self.noise_scheduler.calculate_v(image_embed, times, noise)
elif self.predict_x_start:
target = image_embed
else:
target = noise
loss = self.noise_scheduler.loss_fn(pred, target)
return loss
@@ -1607,14 +1644,10 @@ class ResnetBlock(nn.Module):
self.cross_attn = None
if exists(cond_dim):
self.cross_attn = EinopsToAndFrom(
'b c h w',
'b (h w) c',
CrossAttention(
dim = dim_out,
context_dim = cond_dim,
cosine_sim = cosine_sim_cross_attn
)
self.cross_attn = CrossAttention(
dim = dim_out,
context_dim = cond_dim,
cosine_sim = cosine_sim_cross_attn
)
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
@@ -1633,8 +1666,15 @@ class ResnetBlock(nn.Module):
if exists(self.cross_attn):
assert exists(cond)
h = rearrange(h, 'b c ... -> b ... c')
h, ps = pack([h], 'b * c')
h = self.cross_attn(h, context = cond) + h
h, = unpack(h, ps, 'b * c')
h = rearrange(h, 'b ... c -> b c ...')
h = self.block2(h)
return h + self.res_conv(x)
@@ -1680,11 +1720,11 @@ class CrossAttention(nn.Module):
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
# add null key / value for classifier free guidance in prior net
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b)
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
@@ -1737,7 +1777,7 @@ class LinearAttention(nn.Module):
fmap = self.norm(fmap)
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
q, k, v = rearrange_many((q, k, v), 'b (h c) x y -> (b h) (x y) c', h = h)
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
q = q.softmax(dim = -1)
k = k.softmax(dim = -2)
@@ -1971,7 +2011,7 @@ class Unet(nn.Module):
self_attn = cast_tuple(self_attn, num_stages)
create_self_attn = lambda dim: EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(dim, **attn_kwargs)))
create_self_attn = lambda dim: RearrangeToSequence(Residual(Attention(dim, **attn_kwargs)))
# resnet block klass
@@ -2448,6 +2488,7 @@ class Decoder(nn.Module):
loss_type = 'l2',
beta_schedule = None,
predict_x_start = False,
predict_v = False,
predict_x_start_for_latent_diffusion = False,
image_sizes = None, # for cascading ddpm, image size at each stage
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
@@ -2470,7 +2511,7 @@ class Decoder(nn.Module):
dynamic_thres_percentile = 0.95,
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
p2_loss_weight_k = 1,
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
ddim_sampling_eta = 0. # can be set to 0. for deterministic sampling afaict
):
super().__init__()
@@ -2620,6 +2661,10 @@ class Decoder(nn.Module):
self.predict_x_start = cast_tuple(predict_x_start, len(unets)) if not predict_x_start_for_latent_diffusion else tuple(map(lambda t: isinstance(t, VQGanVAE), self.vaes))
# predict v
self.predict_v = cast_tuple(predict_v, len(unets))
# input image range
self.input_image_range = (-1. if not auto_normalize_img else 0., 1.)
@@ -2700,11 +2745,16 @@ class Decoder(nn.Module):
if exists(unet_number):
unet = self.get_unet(unet_number)
# devices
cuda, cpu = torch.device('cuda'), torch.device('cpu')
self.cuda()
devices = [module_device(unet) for unet in self.unets]
self.unets.cpu()
unet.cuda()
self.unets.to(cpu)
unet.to(cuda)
yield
@@ -2731,14 +2781,16 @@ class Decoder(nn.Module):
x = x.clamp(-s, s) / s
return x
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, predict_v = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
pred, var_interp_frac_unnormalized = self.parse_unet_output(learned_variance, model_output)
if predict_x_start:
if predict_v:
x_start = noise_scheduler.predict_start_from_v(x, t = t, v = pred)
elif predict_x_start:
x_start = pred
else:
x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
@@ -2765,9 +2817,9 @@ class Decoder(nn.Module):
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, predict_v = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
@@ -2782,6 +2834,7 @@ class Decoder(nn.Module):
image_embed,
noise_scheduler,
predict_x_start = False,
predict_v = False,
learned_variance = False,
clip_denoised = True,
lowres_cond_img = None,
@@ -2840,6 +2893,7 @@ class Decoder(nn.Module):
lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level,
predict_x_start = predict_x_start,
predict_v = predict_v,
noise_scheduler = noise_scheduler,
learned_variance = learned_variance,
clip_denoised = clip_denoised
@@ -2865,6 +2919,7 @@ class Decoder(nn.Module):
timesteps,
eta = 1.,
predict_x_start = False,
predict_v = False,
learned_variance = False,
clip_denoised = True,
lowres_cond_img = None,
@@ -2926,7 +2981,9 @@ class Decoder(nn.Module):
# predict x0
if predict_x_start:
if predict_v:
x_start = noise_scheduler.predict_start_from_v(img, t = time_cond, v = pred)
elif predict_x_start:
x_start = pred
else:
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
@@ -2938,10 +2995,7 @@ class Decoder(nn.Module):
# predict noise
if predict_x_start:
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
else:
pred_noise = pred
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = x_start)
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
@@ -2975,7 +3029,7 @@ class Decoder(nn.Module):
return self.p_sample_loop_ddim(*args, noise_scheduler = noise_scheduler, timesteps = timesteps, **kwargs)
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False, lowres_noise_level = None):
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, predict_x_start = False, predict_v = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False, lowres_noise_level = None):
noise = default(noise, lambda: torch.randn_like(x_start))
# normalize to [-1, 1]
@@ -3020,7 +3074,12 @@ class Decoder(nn.Module):
pred, _ = self.parse_unet_output(learned_variance, unet_output)
target = noise if not predict_x_start else x_start
if predict_v:
target = noise_scheduler.calculate_v(x_start, times, noise)
elif predict_x_start:
target = x_start
else:
target = noise
loss = noise_scheduler.loss_fn(pred, target, reduction = 'none')
loss = reduce(loss, 'b ... -> b (...)', 'mean')
@@ -3078,7 +3137,8 @@ class Decoder(nn.Module):
distributed = False,
inpaint_image = None,
inpaint_mask = None,
inpaint_resample_times = 5
inpaint_resample_times = 5,
one_unet_in_gpu_at_time = True
):
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
@@ -3101,16 +3161,17 @@ class Decoder(nn.Module):
assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size)
prev_unet_output_size = self.image_sizes[start_at_unet_number - 2]
img = resize_image_to(image, prev_unet_output_size, nearest = True)
is_cuda = next(self.parameters()).is_cuda
num_unets = self.num_unets
cond_scale = cast_tuple(cond_scale, num_unets)
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, lowres_cond, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.lowres_conds, self.sample_timesteps, cond_scale)):
for unet_number, unet, vae, channel, image_size, predict_x_start, predict_v, learned_variance, noise_scheduler, lowres_cond, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.predict_v, self.learned_variance, self.noise_schedulers, self.lowres_conds, self.sample_timesteps, cond_scale)):
if unet_number < start_at_unet_number:
continue # It's the easiest way to do it
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
context = self.one_unet_in_gpu(unet = unet) if is_cuda and one_unet_in_gpu_at_time else null_context()
with context:
# prepare low resolution conditioning for upsamplers
@@ -3142,6 +3203,7 @@ class Decoder(nn.Module):
text_encodings = text_encodings,
cond_scale = unet_cond_scale,
predict_x_start = predict_x_start,
predict_v = predict_v,
learned_variance = learned_variance,
clip_denoised = not is_latent_diffusion,
lowres_cond_img = lowres_cond_img,
@@ -3181,11 +3243,12 @@ class Decoder(nn.Module):
lowres_conditioner = self.lowres_conds[unet_index]
target_image_size = self.image_sizes[unet_index]
predict_x_start = self.predict_x_start[unet_index]
predict_v = self.predict_v[unet_index]
random_crop_size = self.random_crop_sizes[unet_index]
learned_variance = self.learned_variance[unet_index]
b, c, h, w, device, = *image.shape, image.device
check_shape(image, 'b c h w', c = self.channels)
assert image.shape[1] == self.channels
assert h >= target_image_size and w >= target_image_size
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
@@ -3219,7 +3282,7 @@ class Decoder(nn.Module):
image = vae.encode(image)
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
losses = self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler, lowres_noise_level = lowres_noise_level)
losses = self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, predict_v = predict_v, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler, lowres_noise_level = lowres_noise_level)
if not return_lowres_cond_image:
return losses

View File

@@ -1,14 +1,16 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator, root_validator
from pydantic import BaseModel, validator, model_validator
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
from x_clip import CLIP as XCLIP
from open_clip import list_pretrained
from coca_pytorch import CoCa
from dalle2_pytorch.dalle2_pytorch import (
CoCaAdapter,
OpenAIClipAdapter,
OpenClipAdapter,
Unet,
Decoder,
DiffusionPrior,
@@ -36,12 +38,12 @@ class TrainSplitConfig(BaseModel):
val: float = 0.15
test: float = 0.1
@root_validator
def validate_all(cls, fields):
actual_sum = sum([*fields.values()])
@model_validator(mode = 'after')
def validate_all(self, m):
actual_sum = sum([*dict(self).values()])
if actual_sum != 1.:
raise ValueError(f'{fields.keys()} must sum to 1.0. Found: {actual_sum}')
return fields
raise ValueError(f'{dict(self).keys()} must sum to 1.0. Found: {actual_sum}')
return self
class TrackerLogConfig(BaseModel):
log_type: str = 'console'
@@ -57,6 +59,7 @@ class TrackerLogConfig(BaseModel):
kwargs = self.dict()
return create_logger(self.log_type, data_path, **kwargs)
class TrackerLoadConfig(BaseModel):
load_from: Optional[str] = None
only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming
@@ -87,7 +90,7 @@ class TrackerConfig(BaseModel):
data_path: str = '.tracker_data'
overwrite_data_path: bool = False
log: TrackerLogConfig
load: Optional[TrackerLoadConfig]
load: Optional[TrackerLoadConfig] = None
save: Union[List[TrackerSaveConfig], TrackerSaveConfig]
def create(self, full_config: BaseModel, extra_config: dict, dummy_mode: bool = False) -> Tracker:
@@ -112,11 +115,15 @@ class TrackerConfig(BaseModel):
class AdapterConfig(BaseModel):
make: str = "openai"
model: str = "ViT-L/14"
base_model_kwargs: Dict[str, Any] = None
base_model_kwargs: Optional[Dict[str, Any]] = None
def create(self):
if self.make == "openai":
return OpenAIClipAdapter(self.model)
elif self.make == "open_clip":
pretrained = dict(list_pretrained())
checkpoint = pretrained[self.model]
return OpenClipAdapter(name=self.model, pretrained=checkpoint)
elif self.make == "x-clip":
return XClipAdapter(XCLIP(**self.base_model_kwargs))
elif self.make == "coca":
@@ -127,8 +134,8 @@ class AdapterConfig(BaseModel):
class DiffusionPriorNetworkConfig(BaseModel):
dim: int
depth: int
max_text_len: int = None
num_timesteps: int = None
max_text_len: Optional[int] = None
num_timesteps: Optional[int] = None
num_time_embeds: int = 1
num_image_embeds: int = 1
num_text_embeds: int = 1
@@ -151,7 +158,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
return DiffusionPriorNetwork(**kwargs)
class DiffusionPriorConfig(BaseModel):
clip: AdapterConfig = None
clip: Optional[AdapterConfig] = None
net: DiffusionPriorNetworkConfig
image_embed_dim: int
image_size: int
@@ -188,7 +195,7 @@ class DiffusionPriorTrainConfig(BaseModel):
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
warmup_steps: int = None # number of warmup steps
warmup_steps: Optional[int] = None # number of warmup steps
save_every_seconds: int = 3600 # how often to save
eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with
best_validation_loss: float = 1e9 # the current best valudation loss observed
@@ -221,12 +228,12 @@ class TrainDiffusionPriorConfig(BaseModel):
class UnetConfig(BaseModel):
dim: int
dim_mults: ListOrTuple[int]
image_embed_dim: int = None
text_embed_dim: int = None
cond_on_text_encodings: bool = None
cond_dim: int = None
image_embed_dim: Optional[int] = None
text_embed_dim: Optional[int] = None
cond_on_text_encodings: Optional[bool] = None
cond_dim: Optional[int] = None
channels: int = 3
self_attn: ListOrTuple[int]
self_attn: SingularOrIterable[bool] = False
attn_dim_head: int = 32
attn_heads: int = 16
init_cross_embed: bool = True
@@ -236,14 +243,14 @@ class UnetConfig(BaseModel):
class DecoderConfig(BaseModel):
unets: ListOrTuple[UnetConfig]
image_size: int = None
image_size: Optional[int] = None
image_sizes: ListOrTuple[int] = None
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
clip: Optional[AdapterConfig] = None # The clip model to use if embeddings are not provided
channels: int = 3
timesteps: int = 1000
sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None
loss_type: str = 'l2'
beta_schedule: ListOrTuple[str] = None # None means all cosine
beta_schedule: Optional[ListOrTuple[str]] = None # None means all cosine
learned_variance: SingularOrIterable[bool] = True
image_cond_drop_prob: float = 0.1
text_cond_drop_prob: float = 0.5
@@ -271,9 +278,9 @@ class DecoderConfig(BaseModel):
extra = "allow"
class DecoderDataConfig(BaseModel):
webdataset_base_url: str # path to a webdataset with jpg images
img_embeddings_url: Optional[str] # path to .npy files with embeddings
text_embeddings_url: Optional[str] # path to .npy files with embeddings
webdataset_base_url: str # path to a webdataset with jpg images
img_embeddings_url: Optional[str] = None # path to .npy files with embeddings
text_embeddings_url: Optional[str] = None # path to .npy files with embeddings
num_workers: int = 4
batch_size: int = 64
start_shard: int = 0
@@ -307,25 +314,26 @@ class DecoderTrainConfig(BaseModel):
wd: SingularOrIterable[float] = 0.01
warmup_steps: Optional[SingularOrIterable[int]] = None
find_unused_parameters: bool = True
static_graph: bool = True
max_grad_norm: SingularOrIterable[float] = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
cond_scale: Union[float, List[float]] = 1.0
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
epoch_samples: Optional[int] = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: Optional[int] = None # Same as above but for validation.
save_immediately: bool = False
use_ema: bool = True
ema_beta: float = 0.999
amp: bool = False
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
unet_training_mask: Optional[ListOrTuple[bool]] = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
FID: Dict[str, Any] = None
IS: Dict[str, Any] = None
KID: Dict[str, Any] = None
LPIPS: Dict[str, Any] = None
FID: Optional[Dict[str, Any]] = None
IS: Optional[Dict[str, Any]] = None
KID: Optional[Dict[str, Any]] = None
LPIPS: Optional[Dict[str, Any]] = None
class TrainDecoderConfig(BaseModel):
decoder: DecoderConfig
@@ -339,11 +347,14 @@ class TrainDecoderConfig(BaseModel):
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
print(config)
return cls(**config)
@root_validator
def check_has_embeddings(cls, values):
@model_validator(mode = 'after')
def check_has_embeddings(self, m):
# Makes sure that enough information is provided to get the embeddings specified for training
values = dict(self)
data_config, decoder_config = values.get('data'), values.get('decoder')
if not exists(data_config) or not exists(decoder_config):
@@ -368,4 +379,4 @@ class TrainDecoderConfig(BaseModel):
if text_emb_url:
assert using_text_embeddings, "Text embeddings are being loaded, but text embeddings are not being conditioned on. This will slow down the dataloader for no reason."
return values
return m

View File

@@ -236,7 +236,7 @@ class DiffusionPriorTrainer(nn.Module):
)
if exists(cosine_decay_max_steps):
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
self.scheduler = CosineAnnealingLR(self.optimizer, T_max = cosine_decay_max_steps)
else:
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)

View File

@@ -1 +1 @@
__version__ = '1.10.9'
__version__ = '1.15.6'

View File

@@ -11,8 +11,7 @@ import torch.nn.functional as F
from torch.autograd import grad as torch_grad
import torchvision
from einops import rearrange, reduce, repeat
from einops_exts import rearrange_many
from einops import rearrange, reduce, repeat, pack, unpack
from einops.layers.torch import Rearrange
# constants
@@ -408,7 +407,7 @@ class Attention(nn.Module):
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)

View File

@@ -26,17 +26,17 @@ setup(
install_requires=[
'accelerate',
'click',
'clip-anytorch>=2.4.0',
'open-clip-torch>=2.0.0,<3.0.0',
'clip-anytorch>=2.5.2',
'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7',
'einops>=0.4',
'einops-exts>=0.0.3',
'einops>=0.7.0',
'embedding-reader',
'kornia>=0.5.4',
'numpy',
'packaging',
'pillow',
'pydantic',
'pydantic>=2',
'pytorch-warmup',
'resize-right>=0.0.2',
'rotary-embedding-torch',

View File

@@ -511,7 +511,7 @@ def train(
if next_task == 'eval':
if exists(evaluate_config):
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.model_dump(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
if is_master:
tracker.log(evaluation, step=step())
next_task = 'sample'
@@ -548,7 +548,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
accelerator.wait_for_everyone() # If nodes arrive at this point at different times they might try to autoresume the current run which makes no sense and will cause errors
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
tracker.save_config(config_path, config_name='decoder_config.json')
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
tracker.add_save_metadata(state_dict_key='config', metadata=config.model_dump())
return tracker
def initialize_training(config: TrainDecoderConfig, config_path):
@@ -556,7 +556,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
torch.manual_seed(config.seed)
# Set up accelerator for configurable distributed training
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters, static_graph=config.train.static_graph)
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=60*60))
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs])
@@ -577,6 +577,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
shards_per_process = len(all_shards) // world_size
assert shards_per_process > 0, "Not enough shards to split evenly"
my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process]
dataloaders = create_dataloaders (
available_shards=my_shards,
img_preproc = config.data.img_preproc,
@@ -584,7 +585,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict(),
**config.data.model_dump(),
rank = rank,
seed = config.seed,
)
@@ -635,7 +636,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
inference_device=accelerator.device,
evaluate_config=config.evaluate,
condition_on_text_encodings=conditioning_on_text,
**config.train.dict(),
**config.train.model_dump(),
)
# Create a simple click command line interface to load the config and start the training