mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 13:44:21 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
07abfcf45b | ||
|
|
2e35a9967d |
@@ -1113,6 +1113,7 @@ For detailed information on training the diffusion prior, please refer to the [d
|
|||||||
- [x] speed up inference, read up on papers (ddim)
|
- [x] speed up inference, read up on papers (ddim)
|
||||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||||
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
||||||
|
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
|
||||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||||
|
|
||||||
## Citations
|
## Citations
|
||||||
|
|||||||
@@ -1503,6 +1503,7 @@ class LinearAttention(nn.Module):
|
|||||||
k = k.softmax(dim = -2)
|
k = k.softmax(dim = -2)
|
||||||
|
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
v = v / (x * y)
|
||||||
|
|
||||||
context = einsum('b n d, b n e -> b d e', k, v)
|
context = einsum('b n d, b n e -> b d e', k, v)
|
||||||
out = einsum('b n d, b d e -> b n e', q, context)
|
out = einsum('b n d, b d e -> b n e', q, context)
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '1.1.0'
|
__version__ = '1.2.0'
|
||||||
|
|||||||
Reference in New Issue
Block a user