mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
13 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
07abfcf45b | ||
|
|
2e35a9967d | ||
|
|
406e75043f | ||
|
|
9646dfc0e6 | ||
|
|
62043acb2f | ||
|
|
417ff808e6 | ||
|
|
f3d7e226ba | ||
|
|
48a1302428 | ||
|
|
ccaa46b81b | ||
|
|
76d08498cc | ||
|
|
f9423d308b | ||
|
|
06c65b60d2 | ||
|
|
4145474bab |
@@ -1112,7 +1112,8 @@ For detailed information on training the diffusion prior, please refer to the [d
|
||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||
- [x] speed up inference, read up on papers (ddim)
|
||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
||||
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -69,6 +69,7 @@ Settings for controlling the training hyperparameters.
|
||||
| `wd` | No | `0.01` | The weight decay. |
|
||||
| `max_grad_norm`| No | `0.5` | The grad norm clipping. |
|
||||
| `save_every_n_samples` | No | `100000` | Samples will be generated and a checkpoint will be saved every `save_every_n_samples` samples. |
|
||||
| `cond_scale` | No | `1.0` | Conditioning scale to use for sampling. Can also be an array of values, one for each unet. |
|
||||
| `device` | No | `cuda:0` | The device to train on. |
|
||||
| `epoch_samples` | No | `None` | Limits the number of samples iterated through in each epoch. This must be set if resampling. None means no limit. |
|
||||
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
||||
|
||||
@@ -1,18 +1,14 @@
|
||||
{
|
||||
"prior": {
|
||||
"clip": {
|
||||
"make": "x-clip",
|
||||
"model": "ViT-L/14",
|
||||
"base_model_kwargs": {
|
||||
"dim_text": 768,
|
||||
"dim_image": 768,
|
||||
"dim_latent": 768
|
||||
}
|
||||
"make": "openai",
|
||||
"model": "ViT-L/14"
|
||||
},
|
||||
"net": {
|
||||
"dim": 768,
|
||||
"depth": 12,
|
||||
"num_timesteps": 1000,
|
||||
"max_text_len": 77,
|
||||
"num_time_embeds": 1,
|
||||
"num_image_embeds": 1,
|
||||
"num_text_embeds": 1,
|
||||
@@ -20,8 +16,8 @@
|
||||
"heads": 12,
|
||||
"ff_mult": 4,
|
||||
"norm_out": true,
|
||||
"attn_dropout": 0.0,
|
||||
"ff_dropout": 0.0,
|
||||
"attn_dropout": 0.05,
|
||||
"ff_dropout": 0.05,
|
||||
"final_proj": true,
|
||||
"normformer": true,
|
||||
"rotary_emb": true
|
||||
@@ -30,6 +26,7 @@
|
||||
"image_size": 224,
|
||||
"image_channels": 3,
|
||||
"timesteps": 1000,
|
||||
"sample_timesteps": 64,
|
||||
"cond_drop_prob": 0.1,
|
||||
"loss_type": "l2",
|
||||
"predict_x_start": true,
|
||||
@@ -37,34 +34,48 @@
|
||||
"condition_on_text_encodings": true
|
||||
},
|
||||
"data": {
|
||||
"image_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/",
|
||||
"text_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/",
|
||||
"meta_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/",
|
||||
"batch_size": 256,
|
||||
"batch_size": 128,
|
||||
"num_data_points": 100000,
|
||||
"eval_every_seconds": 1600,
|
||||
"image_url": "<path to your images>",
|
||||
"meta_url": "<path to your metadata>",
|
||||
"splits": {
|
||||
"train": 0.9,
|
||||
"val": 1e-7,
|
||||
"test": 0.0999999
|
||||
"train": 0.8,
|
||||
"val": 0.1,
|
||||
"test": 0.1
|
||||
}
|
||||
},
|
||||
"train": {
|
||||
"epochs": 1,
|
||||
"epochs": 5,
|
||||
"lr": 1.1e-4,
|
||||
"wd": 6.02e-2,
|
||||
"max_grad_norm": 0.5,
|
||||
"use_ema": true,
|
||||
"ema_beta": 0.9999,
|
||||
"ema_update_after_step": 50,
|
||||
"warmup_steps": 50,
|
||||
"amp": false,
|
||||
"save_every": 10000
|
||||
},
|
||||
"load": {
|
||||
"source": null,
|
||||
"resume": false
|
||||
"save_every_seconds": 3600,
|
||||
"eval_timesteps": [64, 1000],
|
||||
"random_seed": 84513
|
||||
},
|
||||
"tracker": {
|
||||
"tracker_type": "wandb",
|
||||
"data_path": "./prior_checkpoints",
|
||||
"wandb_entity": "laion",
|
||||
"wandb_project": "diffusion-prior",
|
||||
"verbose": true
|
||||
"data_path": ".prior",
|
||||
"overwrite_data_path": true,
|
||||
"log": {
|
||||
"log_type": "wandb",
|
||||
"wandb_entity": "<your wandb username>",
|
||||
"wandb_project": "prior_debugging",
|
||||
"wandb_resume": false,
|
||||
"verbose": true
|
||||
},
|
||||
"save": [
|
||||
{
|
||||
"save_to": "local",
|
||||
"save_type": "checkpoint",
|
||||
"save_latest_to": ".prior/latest_checkpoint.pth",
|
||||
"save_best_to": ".prior/best_checkpoint.pth"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,6 +75,8 @@ def cast_tuple(val, length = None, validate = True):
|
||||
return out
|
||||
|
||||
def module_device(module):
|
||||
if isinstance(module, nn.Identity):
|
||||
return 'cpu' # It doesn't matter
|
||||
return next(module.parameters()).device
|
||||
|
||||
def zero_init_(m):
|
||||
@@ -514,6 +516,17 @@ class NoiseScheduler(nn.Module):
|
||||
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
||||
)
|
||||
|
||||
def q_sample_from_to(self, x_from, from_t, to_t, noise = None):
|
||||
shape = x_from.shape
|
||||
noise = default(noise, lambda: torch.randn_like(x_from))
|
||||
|
||||
alpha = extract(self.sqrt_alphas_cumprod, from_t, shape)
|
||||
sigma = extract(self.sqrt_one_minus_alphas_cumprod, from_t, shape)
|
||||
alpha_next = extract(self.sqrt_alphas_cumprod, to_t, shape)
|
||||
sigma_next = extract(self.sqrt_one_minus_alphas_cumprod, to_t, shape)
|
||||
|
||||
return x_from * (alpha_next / alpha) + noise * (sigma_next * alpha - sigma * alpha_next) / alpha
|
||||
|
||||
def predict_start_from_noise(self, x_t, t, noise):
|
||||
return (
|
||||
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
||||
@@ -1490,6 +1503,7 @@ class LinearAttention(nn.Module):
|
||||
k = k.softmax(dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
v = v / (x * y)
|
||||
|
||||
context = einsum('b n d, b n e -> b d e', k, v)
|
||||
out = einsum('b n d, b d e -> b n e', q, context)
|
||||
@@ -1525,6 +1539,38 @@ class CrossEmbedLayer(nn.Module):
|
||||
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
||||
return torch.cat(fmaps, dim = 1)
|
||||
|
||||
class UpsampleCombiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
enabled = False,
|
||||
dim_ins = tuple(),
|
||||
dim_outs = tuple()
|
||||
):
|
||||
super().__init__()
|
||||
assert len(dim_ins) == len(dim_outs)
|
||||
self.enabled = enabled
|
||||
|
||||
if not self.enabled:
|
||||
self.dim_out = dim
|
||||
return
|
||||
|
||||
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
||||
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
||||
|
||||
def forward(self, x, fmaps = None):
|
||||
target_size = x.shape[-1]
|
||||
|
||||
fmaps = default(fmaps, tuple())
|
||||
|
||||
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
||||
return x
|
||||
|
||||
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
|
||||
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
||||
return torch.cat((x, *outs), dim = 1)
|
||||
|
||||
class Unet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -1562,6 +1608,7 @@ class Unet(nn.Module):
|
||||
scale_skip_connection = False,
|
||||
pixel_shuffle_upsample = True,
|
||||
final_conv_kernel_size = 1,
|
||||
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1697,7 +1744,8 @@ class Unet(nn.Module):
|
||||
self.ups = nn.ModuleList([])
|
||||
num_resolutions = len(in_out)
|
||||
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
|
||||
is_first = ind == 0
|
||||
@@ -1739,6 +1787,8 @@ class Unet(nn.Module):
|
||||
elif sparse_attn:
|
||||
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
|
||||
|
||||
upsample_combiner_dims.append(dim_out)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
@@ -1746,7 +1796,18 @@ class Unet(nn.Module):
|
||||
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
|
||||
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
# whether to combine outputs from all upsample blocks for final resnet block
|
||||
|
||||
self.upsample_combiner = UpsampleCombiner(
|
||||
dim = dim,
|
||||
enabled = combine_upsample_fmaps,
|
||||
dim_ins = upsample_combiner_dims,
|
||||
dim_outs = (dim,) * len(upsample_combiner_dims)
|
||||
)
|
||||
|
||||
# a final resnet block
|
||||
|
||||
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
@@ -1940,7 +2001,8 @@ class Unet(nn.Module):
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
hiddens = []
|
||||
down_hiddens = []
|
||||
up_hiddens = []
|
||||
|
||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
||||
if exists(pre_downsample):
|
||||
@@ -1950,10 +2012,10 @@ class Unet(nn.Module):
|
||||
|
||||
for resnet_block in resnet_blocks:
|
||||
x = resnet_block(x, t, c)
|
||||
hiddens.append(x)
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
x = attn(x)
|
||||
hiddens.append(x.contiguous())
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
@@ -1965,7 +2027,7 @@ class Unet(nn.Module):
|
||||
|
||||
x = self.mid_block2(x, t, mid_c)
|
||||
|
||||
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
|
||||
for init_block, resnet_blocks, attn, upsample in self.ups:
|
||||
x = connect_skip(x)
|
||||
@@ -1976,8 +2038,12 @@ class Unet(nn.Module):
|
||||
x = resnet_block(x, t, c)
|
||||
|
||||
x = attn(x)
|
||||
|
||||
up_hiddens.append(x.contiguous())
|
||||
x = upsample(x)
|
||||
|
||||
x = self.upsample_combiner(x, up_hiddens)
|
||||
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
|
||||
x = self.final_resnet_block(x, t)
|
||||
@@ -2326,7 +2392,7 @@ class Decoder(nn.Module):
|
||||
|
||||
@property
|
||||
def condition_on_text_encodings(self):
|
||||
return any([unet.cond_on_text_encodings for unet in self.unets])
|
||||
return any([unet.cond_on_text_encodings for unet in self.unets if isinstance(unet, Unet)])
|
||||
|
||||
def get_unet(self, unet_number):
|
||||
assert 0 < unet_number <= self.num_unets
|
||||
@@ -2430,14 +2496,18 @@ class Decoder(nn.Module):
|
||||
is_latent_diffusion = False,
|
||||
lowres_noise_level = None,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
device = self.device
|
||||
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
if exists(inpaint_image):
|
||||
is_inpaint = exists(inpaint_image)
|
||||
resample_times = inpaint_resample_times if is_inpaint else 1
|
||||
|
||||
if is_inpaint:
|
||||
inpaint_image = self.normalize_img(inpaint_image)
|
||||
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||
@@ -2447,31 +2517,40 @@ class Decoder(nn.Module):
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||
times = torch.full((b,), i, device = device, dtype = torch.long)
|
||||
for time in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||
is_last_timestep = time == 0
|
||||
|
||||
if exists(inpaint_image):
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
for r in reversed(range(0, resample_times)):
|
||||
is_last_resample_step = r == 0
|
||||
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
img,
|
||||
times,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
lowres_noise_level = lowres_noise_level,
|
||||
predict_x_start = predict_x_start,
|
||||
noise_scheduler = noise_scheduler,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
times = torch.full((b,), time, device = device, dtype = torch.long)
|
||||
|
||||
if exists(inpaint_image):
|
||||
if is_inpaint:
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
img,
|
||||
times,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
lowres_noise_level = lowres_noise_level,
|
||||
predict_x_start = predict_x_start,
|
||||
noise_scheduler = noise_scheduler,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
|
||||
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
||||
# in repaint, you renoise and resample up to 10 times every step
|
||||
img = noise_scheduler.q_sample_from_to(img, times - 1, times)
|
||||
|
||||
if is_inpaint:
|
||||
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||
|
||||
unnormalize_img = self.unnormalize_img(img)
|
||||
@@ -2495,7 +2574,8 @@ class Decoder(nn.Module):
|
||||
is_latent_diffusion = False,
|
||||
lowres_noise_level = None,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
||||
|
||||
@@ -2504,7 +2584,10 @@ class Decoder(nn.Module):
|
||||
times = list(reversed(times.int().tolist()))
|
||||
time_pairs = list(zip(times[:-1], times[1:]))
|
||||
|
||||
if exists(inpaint_image):
|
||||
is_inpaint = exists(inpaint_image)
|
||||
resample_times = inpaint_resample_times if is_inpaint else 1
|
||||
|
||||
if is_inpaint:
|
||||
inpaint_image = self.normalize_img(inpaint_image)
|
||||
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||
@@ -2517,39 +2600,49 @@ class Decoder(nn.Module):
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
|
||||
alpha = alphas[time]
|
||||
alpha_next = alphas[time_next]
|
||||
is_last_timestep = time_next == 0
|
||||
|
||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||
for r in reversed(range(0, resample_times)):
|
||||
is_last_resample_step = r == 0
|
||||
|
||||
if exists(inpaint_image):
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
alpha = alphas[time]
|
||||
alpha_next = alphas[time_next]
|
||||
|
||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||
|
||||
if learned_variance:
|
||||
pred, _ = pred.chunk(2, dim = 1)
|
||||
if is_inpaint:
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
|
||||
if predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||
|
||||
if clip_denoised:
|
||||
x_start = self.dynamic_threshold(x_start)
|
||||
if learned_variance:
|
||||
pred, _ = pred.chunk(2, dim = 1)
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(img) if time_next > 0 else 0.
|
||||
if predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
|
||||
img = x_start * alpha_next.sqrt() + \
|
||||
c1 * noise + \
|
||||
c2 * pred_noise
|
||||
if clip_denoised:
|
||||
x_start = self.dynamic_threshold(x_start)
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
||||
|
||||
img = x_start * alpha_next.sqrt() + \
|
||||
c1 * noise + \
|
||||
c2 * pred_noise
|
||||
|
||||
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
||||
# in repaint, you renoise and resample up to 10 times every step
|
||||
time_next_cond = torch.full((batch,), time_next, device = device, dtype = torch.long)
|
||||
img = noise_scheduler.q_sample_from_to(img, time_next_cond, time_cond)
|
||||
|
||||
if exists(inpaint_image):
|
||||
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||
@@ -2646,15 +2739,18 @@ class Decoder(nn.Module):
|
||||
@eval_decorator
|
||||
def sample(
|
||||
self,
|
||||
image = None,
|
||||
image_embed = None,
|
||||
text = None,
|
||||
text_encodings = None,
|
||||
batch_size = 1,
|
||||
cond_scale = 1.,
|
||||
start_at_unet_number = 1,
|
||||
stop_at_unet_number = None,
|
||||
distributed = False,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||
|
||||
@@ -2671,14 +2767,22 @@ class Decoder(nn.Module):
|
||||
assert not (exists(inpaint_image) ^ exists(inpaint_mask)), 'inpaint_image and inpaint_mask (boolean mask of [batch, height, width]) must be both given for inpainting'
|
||||
|
||||
img = None
|
||||
if start_at_unet_number > 1:
|
||||
# Then we are not generating the first image and one must have been passed in
|
||||
assert exists(image), 'image must be passed in if starting at unet number > 1'
|
||||
assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size)
|
||||
prev_unet_output_size = self.image_sizes[start_at_unet_number - 2]
|
||||
img = resize_image_to(image, prev_unet_output_size, nearest = True)
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
num_unets = self.num_unets
|
||||
cond_scale = cast_tuple(cond_scale, num_unets)
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, lowres_cond, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.lowres_conds, self.sample_timesteps, cond_scale)):
|
||||
if unet_number < start_at_unet_number:
|
||||
continue # It's the easiest way to do it
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
|
||||
|
||||
with context:
|
||||
# prepare low resolution conditioning for upsamplers
|
||||
@@ -2718,7 +2822,8 @@ class Decoder(nn.Module):
|
||||
noise_scheduler = noise_scheduler,
|
||||
timesteps = sample_timesteps,
|
||||
inpaint_image = inpaint_image,
|
||||
inpaint_mask = inpaint_mask
|
||||
inpaint_mask = inpaint_mask,
|
||||
inpaint_resample_times = inpaint_resample_times
|
||||
)
|
||||
|
||||
img = vae.decode(img)
|
||||
|
||||
@@ -67,6 +67,15 @@ class PriorEmbeddingDataset(IterableDataset):
|
||||
def __str__(self):
|
||||
return f"<PriorEmbeddingDataset: start: {self.start}, stop: {self.stop}, len: {self.__len__()}>"
|
||||
|
||||
def set_start(self, start):
|
||||
"""
|
||||
Adjust the starting point within the reader, useful for resuming an epoch
|
||||
"""
|
||||
self.start = start
|
||||
|
||||
def get_start(self):
|
||||
return self.start
|
||||
|
||||
def get_sample(self):
|
||||
"""
|
||||
pre-proocess data from either reader into a common format
|
||||
|
||||
@@ -528,13 +528,16 @@ class Tracker:
|
||||
elif save_type == 'model':
|
||||
if isinstance(trainer, DiffusionPriorTrainer):
|
||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||
prior: DiffusionPrior = trainer.unwrap_model(prior)
|
||||
prior: DiffusionPrior = trainer.accelerator.unwrap_model(prior)
|
||||
# Remove CLIP if it is part of the model
|
||||
original_clip = prior.clip
|
||||
prior.clip = None
|
||||
model_state_dict = prior.state_dict()
|
||||
prior.clip = original_clip
|
||||
elif isinstance(trainer, DecoderTrainer):
|
||||
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||
# Remove CLIP if it is part of the model
|
||||
original_clip = decoder.clip
|
||||
decoder.clip = None
|
||||
if trainer.use_ema:
|
||||
trainable_unets = decoder.unets
|
||||
@@ -543,6 +546,7 @@ class Tracker:
|
||||
decoder.unets = trainable_unets # Swap back
|
||||
else:
|
||||
model_state_dict = decoder.state_dict()
|
||||
decoder.clip = original_clip
|
||||
else:
|
||||
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
||||
state_dict = {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
|
||||
|
||||
from x_clip import CLIP as XCLIP
|
||||
from coca_pytorch import CoCa
|
||||
@@ -25,11 +25,9 @@ def exists(val):
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def ListOrTuple(inner_type):
|
||||
return Union[List[inner_type], Tuple[inner_type]]
|
||||
|
||||
def SingularOrIterable(inner_type):
|
||||
return Union[inner_type, ListOrTuple(inner_type)]
|
||||
InnerType = TypeVar('InnerType')
|
||||
ListOrTuple = Union[List[InnerType], Tuple[InnerType]]
|
||||
SingularOrIterable = Union[InnerType, ListOrTuple[InnerType]]
|
||||
|
||||
# general pydantic classes
|
||||
|
||||
@@ -145,6 +143,9 @@ class DiffusionPriorNetworkConfig(BaseModel):
|
||||
normformer: bool = False
|
||||
rotary_emb: bool = True
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
def create(self):
|
||||
kwargs = self.dict()
|
||||
return DiffusionPriorNetwork(**kwargs)
|
||||
@@ -187,23 +188,26 @@ class DiffusionPriorTrainConfig(BaseModel):
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.99
|
||||
amp: bool = False
|
||||
save_every: int = 10000 # what steps to save on
|
||||
warmup_steps: int = None # number of warmup steps
|
||||
save_every_seconds: int = 3600 # how often to save
|
||||
eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with
|
||||
best_validation_loss: float = 1e9 # the current best valudation loss observed
|
||||
current_epoch: int = 0 # the current epoch
|
||||
num_samples_seen: int = 0 # the current number of samples seen
|
||||
random_seed: int = 0 # manual seed for torch
|
||||
|
||||
class DiffusionPriorDataConfig(BaseModel):
|
||||
image_url: str # path to embeddings folder
|
||||
meta_url: str # path to metadata (captions) for images
|
||||
splits: TrainSplitConfig
|
||||
batch_size: int = 64
|
||||
|
||||
class DiffusionPriorLoadConfig(BaseModel):
|
||||
source: str = None
|
||||
resume: bool = False
|
||||
image_url: str # path to embeddings folder
|
||||
meta_url: str # path to metadata (captions) for images
|
||||
splits: TrainSplitConfig # define train, validation, test splits for your dataset
|
||||
batch_size: int # per-gpu batch size used to train the model
|
||||
num_data_points: int = 25e7 # total number of datapoints to train on
|
||||
eval_every_seconds: int = 3600 # validation statistics will be performed this often
|
||||
|
||||
class TrainDiffusionPriorConfig(BaseModel):
|
||||
prior: DiffusionPriorConfig
|
||||
data: DiffusionPriorDataConfig
|
||||
train: DiffusionPriorTrainConfig
|
||||
load: DiffusionPriorLoadConfig
|
||||
tracker: TrackerConfig
|
||||
|
||||
@classmethod
|
||||
@@ -216,13 +220,13 @@ class TrainDiffusionPriorConfig(BaseModel):
|
||||
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
dim_mults: ListOrTuple[int]
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
self_attn: ListOrTuple(int)
|
||||
self_attn: ListOrTuple[int]
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
init_cross_embed: bool = True
|
||||
@@ -231,16 +235,16 @@ class UnetConfig(BaseModel):
|
||||
extra = "allow"
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
unets: ListOrTuple[UnetConfig]
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
image_sizes: ListOrTuple[int] = None
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
sample_timesteps: Optional[SingularOrIterable(int)] = None
|
||||
sample_timesteps: Optional[SingularOrIterable[int]] = None
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: ListOrTuple(str) = 'cosine'
|
||||
learned_variance: bool = True
|
||||
beta_schedule: ListOrTuple[str] = None # None means all cosine
|
||||
learned_variance: SingularOrIterable[bool] = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
|
||||
@@ -299,20 +303,22 @@ class DecoderDataConfig(BaseModel):
|
||||
|
||||
class DecoderTrainConfig(BaseModel):
|
||||
epochs: int = 20
|
||||
lr: SingularOrIterable(float) = 1e-4
|
||||
wd: SingularOrIterable(float) = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable(int)] = None
|
||||
lr: SingularOrIterable[float] = 1e-4
|
||||
wd: SingularOrIterable[float] = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable[int]] = None
|
||||
find_unused_parameters: bool = True
|
||||
max_grad_norm: SingularOrIterable(float) = 0.5
|
||||
max_grad_norm: SingularOrIterable[float] = 0.5
|
||||
save_every_n_samples: int = 100000
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
device: str = 'cuda:0'
|
||||
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: int = None # Same as above but for validation.
|
||||
save_immediately: bool = False
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
|
||||
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
@@ -321,12 +327,6 @@ class DecoderEvaluateConfig(BaseModel):
|
||||
KID: Dict[str, Any] = None
|
||||
LPIPS: Dict[str, Any] = None
|
||||
|
||||
class DecoderLoadConfig(BaseModel):
|
||||
source: str = None # Supports file and wandb
|
||||
run_path: str = '' # Used only if source is wandb
|
||||
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
|
||||
resume: bool = False # If using wandb, whether to resume the run
|
||||
|
||||
class TrainDecoderConfig(BaseModel):
|
||||
decoder: DecoderConfig
|
||||
data: DecoderDataConfig
|
||||
|
||||
@@ -174,27 +174,21 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
diffusion_prior,
|
||||
accelerator,
|
||||
use_ema = True,
|
||||
lr = 3e-4,
|
||||
wd = 1e-2,
|
||||
eps = 1e-6,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
device = None,
|
||||
accelerator = None,
|
||||
verbose = True,
|
||||
warmup_steps = 1,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(diffusion_prior, DiffusionPrior)
|
||||
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
|
||||
assert isinstance(accelerator, Accelerator)
|
||||
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
||||
|
||||
# verbosity
|
||||
|
||||
self.verbose = verbose
|
||||
|
||||
# assign some helpful member vars
|
||||
|
||||
self.accelerator = accelerator
|
||||
@@ -202,23 +196,31 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
# setting the device
|
||||
|
||||
if not exists(accelerator) and not exists(device):
|
||||
diffusion_prior_device = next(diffusion_prior.parameters()).device
|
||||
self.print(f'accelerator not given, and device not specified: defaulting to device of diffusion prior parameters - {diffusion_prior_device}')
|
||||
self.device = diffusion_prior_device
|
||||
else:
|
||||
self.device = accelerator.device if exists(accelerator) else device
|
||||
diffusion_prior.to(self.device)
|
||||
self.device = accelerator.device
|
||||
diffusion_prior.to(self.device)
|
||||
|
||||
# save model
|
||||
|
||||
self.diffusion_prior = diffusion_prior
|
||||
|
||||
# optimizer and mixed precision stuff
|
||||
# mixed precision checks
|
||||
|
||||
self.amp = amp
|
||||
if (
|
||||
exists(self.accelerator)
|
||||
and self.accelerator.distributed_type == DistributedType.DEEPSPEED
|
||||
and self.diffusion_prior.clip is not None
|
||||
):
|
||||
# Then we need to make sure clip is using the correct precision or else deepspeed will error
|
||||
cast_type_map = {
|
||||
"fp16": torch.half,
|
||||
"bf16": torch.bfloat16,
|
||||
"no": torch.float
|
||||
}
|
||||
precision_type = cast_type_map[accelerator.mixed_precision]
|
||||
assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip"
|
||||
self.diffusion_prior.clip.to(precision_type)
|
||||
|
||||
self.scaler = GradScaler(enabled = amp)
|
||||
# optimizer stuff
|
||||
|
||||
self.optim_kwargs = dict(lr=lr, wd=wd, eps=eps, group_wd_params=group_wd_params)
|
||||
|
||||
@@ -227,17 +229,21 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
**self.optim_kwargs,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
|
||||
|
||||
self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None
|
||||
|
||||
# distribute the model if using HFA
|
||||
if exists(self.accelerator):
|
||||
self.diffusion_prior, self.optimizer = self.accelerator.prepare(self.diffusion_prior, self.optimizer)
|
||||
|
||||
self.diffusion_prior, self.optimizer, self.scheduler = self.accelerator.prepare(self.diffusion_prior, self.optimizer, self.scheduler)
|
||||
|
||||
# exponential moving average stuff
|
||||
|
||||
self.use_ema = use_ema
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_diffusion_prior = EMA(self.unwrap_model(self.diffusion_prior), **ema_kwargs)
|
||||
self.ema_diffusion_prior = EMA(self.accelerator.unwrap_model(self.diffusion_prior), **ema_kwargs)
|
||||
|
||||
# gradient clipping if needed
|
||||
|
||||
@@ -247,67 +253,24 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.register_buffer('step', torch.tensor([0], device = self.device))
|
||||
|
||||
# accelerator wrappers
|
||||
|
||||
def print(self, msg):
|
||||
if not self.verbose:
|
||||
return
|
||||
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.print(msg)
|
||||
else:
|
||||
print(msg)
|
||||
|
||||
def unwrap_model(self, model):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.unwrap_model(model)
|
||||
else:
|
||||
return model
|
||||
|
||||
def wait_for_everyone(self):
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.wait_for_everyone()
|
||||
|
||||
def is_main_process(self):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.is_main_process
|
||||
else:
|
||||
return True
|
||||
|
||||
def clip_grad_norm_(self, *args):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.clip_grad_norm_(*args)
|
||||
else:
|
||||
return torch.nn.utils.clip_grad_norm_(*args)
|
||||
|
||||
def backprop(self, x):
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.backward(x)
|
||||
else:
|
||||
try:
|
||||
x.backward()
|
||||
except Exception as e:
|
||||
self.print(f"Caught error in backprop call: {e}")
|
||||
|
||||
# utility
|
||||
|
||||
def save(self, path, overwrite = True, **kwargs):
|
||||
# ensure we sync gradients before continuing
|
||||
self.wait_for_everyone()
|
||||
|
||||
# only save on the main process
|
||||
if self.is_main_process():
|
||||
self.print(f"Saving checkpoint at step: {self.step.item()}")
|
||||
if self.accelerator.is_main_process:
|
||||
print(f"Saving checkpoint at step: {self.step.item()}")
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
# FIXME: LambdaLR can't be saved due to pickling issues
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.unwrap_model(self.diffusion_prior).state_dict(), # unwrap the model from distribution if applicable
|
||||
warmup_scheduler = self.warmup_scheduler,
|
||||
model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(),
|
||||
version = version.parse(__version__),
|
||||
step = self.step.item(),
|
||||
step = self.step,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@@ -320,14 +283,14 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, overwrite_lr = True, strict = True):
|
||||
def load(self, path_or_state, overwrite_lr = True, strict = True):
|
||||
"""
|
||||
Load a checkpoint of a diffusion prior trainer.
|
||||
|
||||
Will load the entire trainer, including the optimizer and EMA.
|
||||
|
||||
Params:
|
||||
- path (str): a path to the DiffusionPriorTrainer checkpoint file
|
||||
- path_or_state (str | torch): a path to the DiffusionPriorTrainer checkpoint file
|
||||
- overwrite_lr (bool): wether or not to overwrite the stored LR with the LR specified in the new trainer
|
||||
- strict (bool): kwarg for `torch.nn.Module.load_state_dict`, will force an exact checkpoint match
|
||||
|
||||
@@ -336,56 +299,56 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
"""
|
||||
|
||||
# all processes need to load checkpoint. no restriction here
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
if isinstance(path_or_state, str):
|
||||
path = Path(path_or_state)
|
||||
assert path.exists()
|
||||
loaded_obj = torch.load(str(path), map_location=self.device)
|
||||
|
||||
loaded_obj = torch.load(str(path), map_location=self.device)
|
||||
elif isinstance(path_or_state, dict):
|
||||
loaded_obj = path_or_state
|
||||
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
|
||||
|
||||
# unwrap the model when loading from checkpoint
|
||||
self.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
|
||||
self.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device))
|
||||
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
|
||||
# set warmupstep
|
||||
if exists(self.warmup_scheduler):
|
||||
self.warmup_scheduler.last_step = self.step.item()
|
||||
|
||||
# ensure new lr is used if different from old one
|
||||
if overwrite_lr:
|
||||
new_lr = self.optim_kwargs["lr"]
|
||||
|
||||
self.print(f"Overriding LR to be {new_lr}")
|
||||
|
||||
for group in self.optimizer.param_groups:
|
||||
group["lr"] = new_lr
|
||||
group["lr"] = new_lr if group["lr"] > 0.0 else 0.0
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
# below not be necessary, but I had a suspicion that this wasn't being loaded correctly
|
||||
# below might not be necessary, but I had a suspicion that this wasn't being loaded correctly
|
||||
self.ema_diffusion_prior.ema_model.load_state_dict(loaded_obj["ema_model"])
|
||||
|
||||
# sync and inform
|
||||
self.wait_for_everyone()
|
||||
self.print(f"Loaded model")
|
||||
|
||||
return loaded_obj
|
||||
|
||||
# model functionality
|
||||
|
||||
def update(self):
|
||||
# only continue with updates until all ranks finish
|
||||
self.wait_for_everyone()
|
||||
|
||||
if exists(self.max_grad_norm):
|
||||
self.scaler.unscale_(self.optimizer)
|
||||
# utilize HFA clipping where applicable
|
||||
self.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
|
||||
|
||||
self.scaler.step(self.optimizer)
|
||||
self.scaler.update()
|
||||
self.accelerator.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
|
||||
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
# accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy"
|
||||
if not self.accelerator.optimizer_step_was_skipped:
|
||||
with self.warmup_scheduler.dampening():
|
||||
self.scheduler.step()
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_diffusion_prior.update()
|
||||
|
||||
@@ -414,7 +377,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def embed_text(self, *args, **kwargs):
|
||||
return self.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
|
||||
return self.accelerator.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
|
||||
|
||||
@cast_torch_tensor
|
||||
def forward(
|
||||
@@ -426,16 +389,14 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
total_loss = 0.
|
||||
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||
with autocast(enabled = self.amp):
|
||||
with self.accelerator.autocast():
|
||||
loss = self.diffusion_prior(*chunked_args, **chunked_kwargs)
|
||||
loss = loss * chunk_size_frac
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
# backprop with accelerate if applicable
|
||||
|
||||
if self.training:
|
||||
self.backprop(self.scaler.scale(loss))
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
return total_loss
|
||||
|
||||
@@ -498,23 +459,27 @@ class DecoderTrainer(nn.Module):
|
||||
warmup_schedulers = []
|
||||
|
||||
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps in zip(decoder.unets, lr, wd, eps, warmup_steps):
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
if isinstance(unet, nn.Identity):
|
||||
optimizers.append(None)
|
||||
schedulers.append(None)
|
||||
warmup_schedulers.append(None)
|
||||
else:
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
optimizers.append(optimizer)
|
||||
optimizers.append(optimizer)
|
||||
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
|
||||
|
||||
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
|
||||
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
|
||||
warmup_schedulers.append(warmup_scheduler)
|
||||
|
||||
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
|
||||
warmup_schedulers.append(warmup_scheduler)
|
||||
|
||||
schedulers.append(scheduler)
|
||||
schedulers.append(scheduler)
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
||||
@@ -590,7 +555,8 @@ class DecoderTrainer(nn.Module):
|
||||
for ind in range(0, self.num_unets):
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
save_obj = {**save_obj, optimizer_key: self.accelerator.unwrap_model(optimizer).state_dict()}
|
||||
state_dict = optimizer.state_dict() if optimizer is not None else None
|
||||
save_obj = {**save_obj, optimizer_key: state_dict}
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
||||
@@ -612,8 +578,8 @@ class DecoderTrainer(nn.Module):
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
warmup_scheduler = self.warmup_schedulers[ind]
|
||||
|
||||
self.accelerator.unwrap_model(optimizer).load_state_dict(loaded_obj[optimizer_key])
|
||||
if optimizer is not None:
|
||||
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
||||
|
||||
if exists(warmup_scheduler):
|
||||
warmup_scheduler.last_step = last_step
|
||||
@@ -714,23 +680,32 @@ class DecoderTrainer(nn.Module):
|
||||
*args,
|
||||
unet_number = None,
|
||||
max_batch_size = None,
|
||||
return_lowres_cond_image=False,
|
||||
**kwargs
|
||||
):
|
||||
unet_number = self.validate_and_return_unet_number(unet_number)
|
||||
|
||||
total_loss = 0.
|
||||
|
||||
|
||||
using_amp = self.accelerator.mixed_precision != 'no'
|
||||
|
||||
cond_images = []
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||
with self.accelerator.autocast():
|
||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||
loss_obj = self.decoder(*chunked_args, unet_number = unet_number, return_lowres_cond_image=return_lowres_cond_image, **chunked_kwargs)
|
||||
# loss_obj may be a tuple with loss and cond_image
|
||||
if return_lowres_cond_image:
|
||||
loss, cond_image = loss_obj
|
||||
else:
|
||||
loss = loss_obj
|
||||
cond_image = None
|
||||
loss = loss * chunk_size_frac
|
||||
if cond_image is not None:
|
||||
cond_images.append(cond_image)
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if self.training:
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
return total_loss
|
||||
if return_lowres_cond_image:
|
||||
return total_loss, torch.stack(cond_images)
|
||||
else:
|
||||
return total_loss
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.26.2'
|
||||
__version__ = '1.2.0'
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from datetime import timedelta
|
||||
|
||||
from dalle2_pytorch.trainer import DecoderTrainer
|
||||
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
|
||||
@@ -11,11 +12,12 @@ from clip import tokenize
|
||||
|
||||
import torchvision
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchmetrics.image.fid import FrechetInceptionDistance
|
||||
from torchmetrics.image.inception import InceptionScore
|
||||
from torchmetrics.image.kid import KernelInceptionDistance
|
||||
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
|
||||
from accelerate import Accelerator, DistributedDataParallelKwargs
|
||||
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
|
||||
from accelerate.utils import dataclasses as accelerate_dataclasses
|
||||
import webdataset as wds
|
||||
import click
|
||||
@@ -132,7 +134,7 @@ def get_example_data(dataloader, device, n=5):
|
||||
break
|
||||
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
||||
|
||||
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend="", match_image_size=True):
|
||||
def generate_samples(trainer, example_data, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True):
|
||||
"""
|
||||
Takes example data and generates images from the embeddings
|
||||
Returns three lists: real images, generated images, and captions
|
||||
@@ -157,6 +159,13 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
||||
# Then we are using precomputed text embeddings
|
||||
text_embeddings = torch.stack(text_embeddings)
|
||||
sample_params["text_encodings"] = text_embeddings
|
||||
sample_params["start_at_unet_number"] = start_unet
|
||||
sample_params["stop_at_unet_number"] = end_unet
|
||||
if start_unet > 1:
|
||||
# If we are only training upsamplers
|
||||
sample_params["image"] = torch.stack(real_images)
|
||||
if device is not None:
|
||||
sample_params["_device"] = device
|
||||
samples = trainer.sample(**sample_params)
|
||||
generated_images = list(samples)
|
||||
captions = [text_prepend + txt for txt in txts]
|
||||
@@ -165,15 +174,15 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
||||
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
|
||||
return real_images, generated_images, captions
|
||||
|
||||
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
||||
def generate_grid_samples(trainer, examples, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""):
|
||||
"""
|
||||
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
||||
"""
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend)
|
||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||
return grid_images, captions
|
||||
|
||||
def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=False, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
"""
|
||||
Computes evaluation metrics for the decoder
|
||||
"""
|
||||
@@ -183,7 +192,7 @@ def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=Fa
|
||||
if len(examples) == 0:
|
||||
print("No data to evaluate. Check that your dataloader has shards.")
|
||||
return metrics
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings)
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device)
|
||||
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
|
||||
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
|
||||
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
|
||||
@@ -259,11 +268,13 @@ def train(
|
||||
evaluate_config=None,
|
||||
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
|
||||
validation_samples = None,
|
||||
save_immediately=False,
|
||||
epochs = 20,
|
||||
n_sample_images = 5,
|
||||
save_every_n_samples = 100000,
|
||||
unet_training_mask=None,
|
||||
condition_on_text_encodings=False,
|
||||
cond_scale=1.0,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
@@ -271,6 +282,21 @@ def train(
|
||||
"""
|
||||
is_master = accelerator.process_index == 0
|
||||
|
||||
if not exists(unet_training_mask):
|
||||
# Then the unet mask should be true for all unets in the decoder
|
||||
unet_training_mask = [True] * len(decoder.unets)
|
||||
assert len(unet_training_mask) == len(decoder.unets), f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
trainable_unet_numbers = [i+1 for i, trainable in enumerate(unet_training_mask) if trainable]
|
||||
first_trainable_unet = trainable_unet_numbers[0]
|
||||
last_trainable_unet = trainable_unet_numbers[-1]
|
||||
def move_unets(unet_training_mask):
|
||||
for i in range(len(decoder.unets)):
|
||||
if not unet_training_mask[i]:
|
||||
# Replace the unet from the module list with a nn.Identity(). This training script never uses unets that aren't being trained so this is fine.
|
||||
decoder.unets[i] = nn.Identity().to(inference_device)
|
||||
# Remove non-trainable unets
|
||||
move_unets(unet_training_mask)
|
||||
|
||||
trainer = DecoderTrainer(
|
||||
decoder=decoder,
|
||||
accelerator=accelerator,
|
||||
@@ -285,6 +311,7 @@ def train(
|
||||
sample = 0
|
||||
samples_seen = 0
|
||||
val_sample = 0
|
||||
step = lambda: int(trainer.num_steps_taken(unet_number=first_trainable_unet))
|
||||
|
||||
if tracker.can_recall:
|
||||
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
||||
@@ -296,13 +323,6 @@ def train(
|
||||
accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}")
|
||||
trainer.to(device=inference_device)
|
||||
|
||||
if not exists(unet_training_mask):
|
||||
# Then the unet mask should be true for all unets in the decoder
|
||||
unet_training_mask = [True] * trainer.num_unets
|
||||
first_training_unet = min(index for index, mask in enumerate(unet_training_mask) if mask)
|
||||
step = lambda: int(trainer.num_steps_taken(unet_number=first_training_unet+1))
|
||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
|
||||
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
||||
accelerator.print("This can take a while to load the shard lists...")
|
||||
if is_master:
|
||||
@@ -360,7 +380,7 @@ def train(
|
||||
tokenized_texts = tokenize(txt, truncate=True)
|
||||
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
|
||||
forward_params['text'] = tokenized_texts
|
||||
loss = trainer.forward(img, **forward_params, unet_number=unet)
|
||||
loss = trainer.forward(img, **forward_params, unet_number=unet, _device=inference_device)
|
||||
trainer.update(unet_number=unet)
|
||||
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
|
||||
|
||||
@@ -373,10 +393,10 @@ def train(
|
||||
unet_all_losses = accelerator.gather(unet_losses_tensor)
|
||||
mask = unet_all_losses != 0
|
||||
unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0)
|
||||
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if loss != 0 }
|
||||
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if unet_training_mask[index] }
|
||||
|
||||
# gather decay rate on each UNet
|
||||
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets)}
|
||||
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets) if unet_training_mask[index]}
|
||||
|
||||
log_data = {
|
||||
"Epoch": epoch,
|
||||
@@ -391,7 +411,7 @@ def train(
|
||||
if is_master:
|
||||
tracker.log(log_data, step=step())
|
||||
|
||||
if is_master and last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
if is_master and (last_snapshot + save_every_n_samples < sample or (save_immediately and i == 0)): # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
# It is difficult to gather this kind of info on the accelerator, so we have to do it on the master
|
||||
print("Saving snapshot")
|
||||
last_snapshot = sample
|
||||
@@ -399,7 +419,7 @@ def train(
|
||||
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen)
|
||||
if exists(n_sample_images) and n_sample_images > 0:
|
||||
trainer.eval()
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
if epoch_samples is not None and sample >= epoch_samples:
|
||||
@@ -449,8 +469,9 @@ def train(
|
||||
else:
|
||||
# Then we need to pass the text instead
|
||||
tokenized_texts = tokenize(txt, truncate=True)
|
||||
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
|
||||
forward_params['text'] = tokenized_texts
|
||||
loss = trainer.forward(img.float(), **forward_params, unet_number=unet)
|
||||
loss = trainer.forward(img.float(), **forward_params, unet_number=unet, _device=inference_device)
|
||||
average_val_loss_tensor[0, unet-1] += loss
|
||||
|
||||
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
|
||||
@@ -477,7 +498,7 @@ def train(
|
||||
if next_task == 'eval':
|
||||
if exists(evaluate_config):
|
||||
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings)
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
|
||||
if is_master:
|
||||
tracker.log(evaluation, step=step())
|
||||
next_task = 'sample'
|
||||
@@ -488,15 +509,15 @@ def train(
|
||||
# Generate examples and save the model if we are the master
|
||||
# Generate sample images
|
||||
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, condition_on_text_encodings, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
|
||||
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
|
||||
is_best = False
|
||||
if all_average_val_losses is not None:
|
||||
average_loss = all_average_val_losses.mean(dim=0).item()
|
||||
average_loss = all_average_val_losses.mean(dim=0).sum() / sum(unet_training_mask)
|
||||
if len(validation_losses) == 0 or average_loss < min(validation_losses):
|
||||
is_best = True
|
||||
validation_losses.append(average_loss)
|
||||
@@ -522,7 +543,8 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
|
||||
# Set up accelerator for configurable distributed training
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=60*60))
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs])
|
||||
|
||||
if accelerator.num_processes > 1:
|
||||
# We are using distributed training and want to immediately ensure all can connect
|
||||
|
||||
@@ -1,31 +1,23 @@
|
||||
# TODO: add start, num_data_points, eval_every and group to config
|
||||
# TODO: switch back to repo's wandb
|
||||
|
||||
START = 0
|
||||
NUM_DATA_POINTS = 250e6
|
||||
EVAL_EVERY = 1000
|
||||
GROUP = "distributed"
|
||||
|
||||
import os
|
||||
import click
|
||||
import wandb
|
||||
|
||||
import torch
|
||||
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import numpy as np
|
||||
|
||||
from typing import List
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import set_seed
|
||||
from torch.utils.data import DataLoader
|
||||
from embedding_reader import EmbeddingReader
|
||||
from accelerate.utils import dataclasses as accelerate_dataclasses
|
||||
|
||||
from dalle2_pytorch.dataloaders import get_reader, make_splits
|
||||
from dalle2_pytorch.utils import Timer
|
||||
from dalle2_pytorch.trackers import Tracker
|
||||
from dalle2_pytorch import DiffusionPriorTrainer
|
||||
from dalle2_pytorch.dataloaders import get_reader, make_splits
|
||||
from dalle2_pytorch.train_configs import (
|
||||
DiffusionPriorConfig,
|
||||
DiffusionPriorTrainConfig,
|
||||
TrainDiffusionPriorConfig,
|
||||
)
|
||||
from dalle2_pytorch.trackers import BaseTracker, WandbTracker
|
||||
from dalle2_pytorch import DiffusionPriorTrainer
|
||||
|
||||
|
||||
# helpers
|
||||
@@ -38,8 +30,19 @@ def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def all_between(values: list, lower_bound, upper_bound):
|
||||
for value in values:
|
||||
if value < lower_bound or value > upper_bound:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def make_model(
|
||||
prior_config, train_config, device: str = None, accelerator: Accelerator = None
|
||||
prior_config: DiffusionPriorConfig,
|
||||
train_config: DiffusionPriorTrainConfig,
|
||||
device: str = None,
|
||||
accelerator: Accelerator = None,
|
||||
):
|
||||
# create model from config
|
||||
diffusion_prior = prior_config.create()
|
||||
@@ -54,71 +57,214 @@ def make_model(
|
||||
use_ema=train_config.use_ema,
|
||||
device=device,
|
||||
accelerator=accelerator,
|
||||
warmup_steps=train_config.warmup_steps,
|
||||
)
|
||||
|
||||
return trainer
|
||||
|
||||
|
||||
def create_tracker(
|
||||
accelerator: Accelerator,
|
||||
config: TrainDiffusionPriorConfig,
|
||||
config_path: str,
|
||||
dummy: bool = False,
|
||||
) -> Tracker:
|
||||
tracker_config = config.tracker
|
||||
|
||||
accelerator_config = {
|
||||
"Distributed": accelerator.distributed_type
|
||||
!= accelerate_dataclasses.DistributedType.NO,
|
||||
"DistributedType": accelerator.distributed_type,
|
||||
"NumProcesses": accelerator.num_processes,
|
||||
"MixedPrecision": accelerator.mixed_precision,
|
||||
}
|
||||
|
||||
tracker: Tracker = tracker_config.create(
|
||||
config, accelerator_config, dummy_mode=dummy
|
||||
)
|
||||
|
||||
tracker.save_config(config_path, config_name="prior_config.json")
|
||||
|
||||
return tracker
|
||||
|
||||
|
||||
def pad_gather_reduce(trainer: DiffusionPriorTrainer, x, method="mean"):
|
||||
"""
|
||||
pad a value or tensor across all processes and gather
|
||||
|
||||
params:
|
||||
- trainer: a trainer that carries an accelerator object
|
||||
- x: a number or torch tensor to reduce
|
||||
- method: "mean", "sum", "max", "min"
|
||||
|
||||
return:
|
||||
- the average tensor after maskin out 0's
|
||||
- None if the gather resulted in an empty tensor
|
||||
"""
|
||||
|
||||
assert method in [
|
||||
"mean",
|
||||
"sum",
|
||||
"max",
|
||||
"min",
|
||||
], "This function has limited capabilities [sum, mean, max, min]"
|
||||
assert type(x) is not None, "Cannot reduce a None type object"
|
||||
|
||||
# wait for everyone to arrive here before gathering
|
||||
|
||||
if type(x) is not torch.Tensor:
|
||||
x = torch.tensor([x])
|
||||
|
||||
# verify that the tensor is on the proper device
|
||||
x = x.to(trainer.device)
|
||||
|
||||
# pad across processes
|
||||
padded_x = trainer.accelerator.pad_across_processes(x, dim=0)
|
||||
|
||||
# gather across all procesess
|
||||
gathered_x = trainer.accelerator.gather(padded_x)
|
||||
|
||||
# mask out zeros
|
||||
masked_x = gathered_x[gathered_x != 0]
|
||||
|
||||
# if the tensor is empty, warn and return None
|
||||
if len(masked_x) == 0:
|
||||
click.secho(
|
||||
f"The call to this method resulted in an empty tensor after masking out zeros. The gathered tensor was this: {gathered_x} and the original value passed was: {x}.",
|
||||
fg="red",
|
||||
)
|
||||
return None
|
||||
|
||||
if method == "mean":
|
||||
return torch.mean(masked_x)
|
||||
elif method == "sum":
|
||||
return torch.sum(masked_x)
|
||||
elif method == "max":
|
||||
return torch.max(masked_x)
|
||||
elif method == "min":
|
||||
return torch.min(masked_x)
|
||||
|
||||
|
||||
def save_trainer(
|
||||
tracker: Tracker,
|
||||
trainer: DiffusionPriorTrainer,
|
||||
is_latest: bool,
|
||||
is_best: bool,
|
||||
epoch: int,
|
||||
samples_seen: int,
|
||||
best_validation_loss: float,
|
||||
):
|
||||
"""
|
||||
Logs the model with an appropriate method depending on the tracker
|
||||
"""
|
||||
trainer.accelerator.wait_for_everyone()
|
||||
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(
|
||||
f"RANK:{trainer.accelerator.process_index} | Saving Model | Best={is_best} | Latest={is_latest}",
|
||||
fg="magenta",
|
||||
)
|
||||
|
||||
tracker.save(
|
||||
trainer=trainer,
|
||||
is_best=is_best,
|
||||
is_latest=is_latest,
|
||||
epoch=int(epoch),
|
||||
samples_seen=int(samples_seen),
|
||||
best_validation_loss=best_validation_loss,
|
||||
)
|
||||
|
||||
|
||||
def recall_trainer(tracker: Tracker, trainer: DiffusionPriorTrainer):
|
||||
"""
|
||||
Loads the model with an appropriate method depending on the tracker
|
||||
"""
|
||||
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(f"Loading model from {type(tracker.loader).__name__}", fg="yellow")
|
||||
|
||||
state_dict = tracker.recall()
|
||||
|
||||
trainer.load(state_dict, strict=True)
|
||||
|
||||
return (
|
||||
int(state_dict.get("epoch", 0)),
|
||||
state_dict.get("best_validation_loss", 0),
|
||||
int(state_dict.get("samples_seen", 0)),
|
||||
)
|
||||
|
||||
|
||||
# eval functions
|
||||
|
||||
|
||||
def eval_model(
|
||||
def report_validation_loss(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
dataloader: DataLoader,
|
||||
text_conditioned: bool,
|
||||
use_ema: bool,
|
||||
tracker: Tracker,
|
||||
split: str,
|
||||
tracker_folder: str,
|
||||
loss_type: str,
|
||||
tracker_context: str,
|
||||
tracker: BaseTracker = None,
|
||||
use_ema: bool = True,
|
||||
):
|
||||
trainer.eval()
|
||||
if trainer.is_main_process():
|
||||
click.secho(f"Measuring performance on {tracker_context}", fg="green", blink=True)
|
||||
"""
|
||||
Compute the validation loss on a given subset of data.
|
||||
"""
|
||||
|
||||
with torch.no_grad():
|
||||
total_loss = 0.0
|
||||
total_samples = 0.0
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(
|
||||
f"Measuring performance on {use_ema}-{split} split",
|
||||
fg="green",
|
||||
blink=True,
|
||||
)
|
||||
|
||||
for image_embeddings, text_data in dataloader:
|
||||
image_embeddings = image_embeddings.to(trainer.device)
|
||||
text_data = text_data.to(trainer.device)
|
||||
total_loss = torch.zeros(1, dtype=torch.float, device=trainer.device)
|
||||
|
||||
batches = image_embeddings.shape[0]
|
||||
for image_embeddings, text_data in dataloader:
|
||||
image_embeddings = image_embeddings.to(trainer.device)
|
||||
text_data = text_data.to(trainer.device)
|
||||
|
||||
input_args = dict(image_embed=image_embeddings)
|
||||
input_args = dict(image_embed=image_embeddings)
|
||||
|
||||
if text_conditioned:
|
||||
input_args = dict(**input_args, text=text_data)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text_data)
|
||||
if text_conditioned:
|
||||
input_args = dict(**input_args, text=text_data)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text_data)
|
||||
|
||||
if use_ema:
|
||||
loss = trainer.ema_diffusion_prior(**input_args)
|
||||
else:
|
||||
loss = trainer(**input_args)
|
||||
if use_ema:
|
||||
loss = trainer.ema_diffusion_prior(**input_args)
|
||||
else:
|
||||
loss = trainer(**input_args)
|
||||
|
||||
total_loss += loss * batches
|
||||
total_samples += batches
|
||||
total_loss += loss
|
||||
|
||||
avg_loss = total_loss / total_samples
|
||||
# compute the average loss across all processes
|
||||
|
||||
stats = {f"{tracker_context}-{loss_type}": avg_loss}
|
||||
trainer.print(stats)
|
||||
avg_loss = pad_gather_reduce(trainer, total_loss, method="mean")
|
||||
stats = {f"{tracker_folder}/{loss_type}-loss": avg_loss}
|
||||
|
||||
if exists(tracker):
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
# print and log results on main process
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
|
||||
return avg_loss
|
||||
|
||||
|
||||
def report_cosine_sims(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
dataloader: DataLoader,
|
||||
text_conditioned: bool,
|
||||
tracker: BaseTracker,
|
||||
tracker_context: str = "validation",
|
||||
tracker: Tracker,
|
||||
split: str,
|
||||
timesteps: int,
|
||||
tracker_folder: str,
|
||||
):
|
||||
trainer.eval()
|
||||
if trainer.is_main_process():
|
||||
click.secho("Measuring Cosine-Similarity", fg="green", blink=True)
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(
|
||||
f"Measuring Cosine-Similarity on {split} split with {timesteps} timesteps",
|
||||
fg="green",
|
||||
blink=True,
|
||||
)
|
||||
|
||||
for test_image_embeddings, text_data in dataloader:
|
||||
test_image_embeddings = test_image_embeddings.to(trainer.device)
|
||||
@@ -127,9 +273,7 @@ def report_cosine_sims(
|
||||
# we are text conditioned, we produce an embedding from the tokenized text
|
||||
if text_conditioned:
|
||||
text_embedding, text_encodings = trainer.embed_text(text_data)
|
||||
text_cond = dict(
|
||||
text_embed=text_embedding, text_encodings=text_encodings
|
||||
)
|
||||
text_cond = dict(text_embed=text_embedding, text_encodings=text_encodings)
|
||||
else:
|
||||
text_embedding = text_data
|
||||
text_cond = dict(text_embed=text_embedding)
|
||||
@@ -150,8 +294,7 @@ def report_cosine_sims(
|
||||
text_encodings_shuffled = None
|
||||
|
||||
text_cond_shuffled = dict(
|
||||
text_embed=text_embed_shuffled,
|
||||
text_encodings=text_encodings_shuffled
|
||||
text_embed=text_embed_shuffled, text_encodings=text_encodings_shuffled
|
||||
)
|
||||
|
||||
# prepare the text embedding
|
||||
@@ -164,7 +307,9 @@ def report_cosine_sims(
|
||||
|
||||
# predict on the unshuffled text embeddings
|
||||
predicted_image_embeddings = trainer.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond
|
||||
test_image_embeddings.shape,
|
||||
text_cond,
|
||||
timesteps=timesteps,
|
||||
)
|
||||
|
||||
predicted_image_embeddings = (
|
||||
@@ -174,7 +319,9 @@ def report_cosine_sims(
|
||||
|
||||
# predict on the shuffled embeddings
|
||||
predicted_unrelated_embeddings = trainer.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond_shuffled
|
||||
test_image_embeddings.shape,
|
||||
text_cond_shuffled,
|
||||
timesteps=timesteps,
|
||||
)
|
||||
|
||||
predicted_unrelated_embeddings = (
|
||||
@@ -183,32 +330,97 @@ def report_cosine_sims(
|
||||
)
|
||||
|
||||
# calculate similarities
|
||||
original_similarity = cos(text_embed, test_image_embeddings).cpu().numpy()
|
||||
predicted_similarity = cos(text_embed, predicted_image_embeddings).cpu().numpy()
|
||||
unrelated_similarity = (
|
||||
cos(text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
orig_sim = pad_gather_reduce(
|
||||
trainer, cos(text_embed, test_image_embeddings), method="mean"
|
||||
)
|
||||
predicted_img_similarity = (
|
||||
cos(test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
pred_sim = pad_gather_reduce(
|
||||
trainer, cos(text_embed, predicted_image_embeddings), method="mean"
|
||||
)
|
||||
unrel_sim = pad_gather_reduce(
|
||||
trainer, cos(text_embed, predicted_unrelated_embeddings), method="mean"
|
||||
)
|
||||
pred_img_sim = pad_gather_reduce(
|
||||
trainer,
|
||||
cos(test_image_embeddings, predicted_image_embeddings),
|
||||
method="mean",
|
||||
)
|
||||
|
||||
stats = {
|
||||
f"{tracker_context}/baseline similarity": np.mean(original_similarity),
|
||||
f"{tracker_context}/similarity with text": np.mean(predicted_similarity),
|
||||
f"{tracker_context}/similarity with original image": np.mean(
|
||||
predicted_img_similarity
|
||||
),
|
||||
f"{tracker_context}/similarity with unrelated caption": np.mean(unrelated_similarity),
|
||||
f"{tracker_context}/difference from baseline similarity": np.mean(
|
||||
predicted_similarity - original_similarity
|
||||
),
|
||||
f"{tracker_folder}/baseline similarity [steps={timesteps}]": orig_sim,
|
||||
f"{tracker_folder}/similarity with text [steps={timesteps}]": pred_sim,
|
||||
f"{tracker_folder}/similarity with original image [steps={timesteps}]": pred_img_sim,
|
||||
f"{tracker_folder}/similarity with unrelated caption [steps={timesteps}]": unrel_sim,
|
||||
f"{tracker_folder}/difference from baseline similarity [steps={timesteps}]": pred_sim
|
||||
- orig_sim,
|
||||
}
|
||||
|
||||
for k, v in stats.items():
|
||||
trainer.print(f"{tracker_context}/{k}: {v}")
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
|
||||
if exists(tracker):
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
|
||||
def eval_model(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
dataloader: DataLoader,
|
||||
text_conditioned: bool,
|
||||
split: str,
|
||||
tracker: Tracker,
|
||||
use_ema: bool,
|
||||
report_cosine: bool,
|
||||
report_loss: bool,
|
||||
timesteps: List[int],
|
||||
loss_type: str = None,
|
||||
):
|
||||
"""
|
||||
Run evaluation on a model and track metrics
|
||||
|
||||
returns: loss if requested
|
||||
"""
|
||||
trainer.eval()
|
||||
|
||||
use_ema = "ema" if use_ema else "online"
|
||||
tracker_folder = f"metrics/{use_ema}-{split}"
|
||||
|
||||
# detemine if valid timesteps are passed
|
||||
|
||||
min_timesteps = trainer.accelerator.unwrap_model(
|
||||
trainer.diffusion_prior
|
||||
).sample_timesteps
|
||||
max_timesteps = trainer.accelerator.unwrap_model(
|
||||
trainer.diffusion_prior
|
||||
).noise_scheduler.num_timesteps
|
||||
|
||||
assert all_between(
|
||||
timesteps, lower_bound=min_timesteps, upper_bound=max_timesteps
|
||||
), f"all timesteps values must be between {min_timesteps} and {max_timesteps}: got {timesteps}"
|
||||
|
||||
# measure cosine metrics across various eta and timesteps
|
||||
|
||||
if report_cosine:
|
||||
for timestep in timesteps:
|
||||
report_cosine_sims(
|
||||
trainer,
|
||||
dataloader=dataloader,
|
||||
text_conditioned=text_conditioned,
|
||||
tracker=tracker,
|
||||
split=split,
|
||||
timesteps=timestep,
|
||||
tracker_folder=tracker_folder,
|
||||
)
|
||||
|
||||
# measure loss on a seperate split of data
|
||||
|
||||
if report_loss:
|
||||
loss = report_validation_loss(
|
||||
trainer=trainer,
|
||||
dataloader=dataloader,
|
||||
text_conditioned=text_conditioned,
|
||||
use_ema=use_ema,
|
||||
tracker=tracker,
|
||||
split=split,
|
||||
tracker_folder=tracker_folder,
|
||||
loss_type=loss_type,
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
# training script
|
||||
@@ -216,182 +428,327 @@ def report_cosine_sims(
|
||||
|
||||
def train(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
tracker: Tracker,
|
||||
train_loader: DataLoader,
|
||||
eval_loader: DataLoader,
|
||||
test_loader: DataLoader,
|
||||
config: DiffusionPriorTrainConfig,
|
||||
):
|
||||
# distributed tracking with wandb
|
||||
if trainer.accelerator.num_processes > 1:
|
||||
os.environ["WANDB_START_METHOD"] = "thread"
|
||||
# init timers
|
||||
save_timer = Timer() # when to save
|
||||
samples_timer = Timer() # samples/sec
|
||||
validation_profiler = Timer() # how long is validation taking
|
||||
validation_countdown = Timer() # when to perform evalutation
|
||||
|
||||
tracker = wandb.init(
|
||||
name=f"RANK:{trainer.device}",
|
||||
entity=config.tracker.wandb_entity,
|
||||
project=config.tracker.wandb_project,
|
||||
config=config.dict(),
|
||||
group=GROUP,
|
||||
)
|
||||
# keep track of best validation loss
|
||||
|
||||
# sync after tracker init
|
||||
trainer.wait_for_everyone()
|
||||
|
||||
# init a timer
|
||||
timer = Timer()
|
||||
best_validation_loss = config.train.best_validation_loss
|
||||
samples_seen = config.train.num_samples_seen
|
||||
|
||||
# do training
|
||||
for img, txt in train_loader:
|
||||
trainer.train()
|
||||
current_step = trainer.step.item() + 1
|
||||
|
||||
# place data on device
|
||||
img = img.to(trainer.device)
|
||||
txt = txt.to(trainer.device)
|
||||
start_epoch = config.train.current_epoch
|
||||
|
||||
# pass to model
|
||||
loss = trainer(text=txt, image_embed=img)
|
||||
for epoch in range(start_epoch, config.train.epochs):
|
||||
# if we finished out an old epoch, reset the distribution to be a full epoch
|
||||
tracker.log({"tracking/epoch": epoch}, step=trainer.step.item())
|
||||
|
||||
# display & log loss (will only print from main process)
|
||||
trainer.print(f"Step {current_step}: Loss {loss}")
|
||||
if train_loader.dataset.get_start() > 0 and epoch == start_epoch+1:
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(f"Finished resumed epoch...resetting dataloader.")
|
||||
train_loader.dataset.set_start(0)
|
||||
|
||||
# perform backprop & apply EMA updates
|
||||
trainer.update()
|
||||
for img, txt in train_loader:
|
||||
# setup things every step
|
||||
|
||||
# track samples/sec/rank
|
||||
samples_per_sec = img.shape[0] / timer.elapsed()
|
||||
trainer.train()
|
||||
current_step = trainer.step.item()
|
||||
samples_timer.reset()
|
||||
|
||||
# samples seen
|
||||
samples_seen = (
|
||||
config.data.batch_size * trainer.accelerator.num_processes * current_step
|
||||
)
|
||||
# place data on device
|
||||
|
||||
# ema decay
|
||||
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
|
||||
img = img.to(trainer.device)
|
||||
txt = txt.to(trainer.device)
|
||||
|
||||
# Log on all processes for debugging
|
||||
tracker.log(
|
||||
{
|
||||
"tracking/samples-sec": samples_per_sec,
|
||||
"tracking/samples-seen": samples_seen,
|
||||
"tracking/ema-decay": ema_decay,
|
||||
"metrics/training-loss": loss,
|
||||
},
|
||||
step=current_step,
|
||||
)
|
||||
# pass to model
|
||||
|
||||
# Metric Tracking & Checkpointing (outside of timer's scope)
|
||||
if current_step % EVAL_EVERY == 0:
|
||||
eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="metrics/online-model-validation",
|
||||
tracker=tracker,
|
||||
use_ema=False,
|
||||
loss = trainer(text=txt, image_embed=img)
|
||||
|
||||
# perform backprop & apply EMA updates
|
||||
|
||||
trainer.update()
|
||||
|
||||
# gather info about training step
|
||||
|
||||
all_loss = pad_gather_reduce(trainer, loss, method="mean")
|
||||
num_samples = pad_gather_reduce(trainer, len(txt), method="sum")
|
||||
samples_per_sec = num_samples / samples_timer.elapsed()
|
||||
samples_seen += num_samples
|
||||
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
|
||||
|
||||
# log
|
||||
|
||||
tracker.log(
|
||||
{
|
||||
"tracking/samples-sec": samples_per_sec,
|
||||
"tracking/samples-seen": samples_seen,
|
||||
"tracking/ema-decay": ema_decay,
|
||||
f"tracking/training-{config.prior.loss_type}": all_loss,
|
||||
},
|
||||
step=current_step,
|
||||
)
|
||||
|
||||
eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="metrics/ema-model-validation",
|
||||
tracker=tracker,
|
||||
use_ema=True,
|
||||
# Metric Tracking @ Timed Intervals
|
||||
|
||||
eval_delta = pad_gather_reduce(
|
||||
trainer, validation_countdown.elapsed(), method="min"
|
||||
)
|
||||
|
||||
report_cosine_sims(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
tracker=tracker,
|
||||
tracker_context="metrics",
|
||||
)
|
||||
if eval_delta != None and eval_delta > config.data.eval_every_seconds:
|
||||
# begin timing how long this takes
|
||||
|
||||
if current_step % config.train.save_every == 0:
|
||||
trainer.save(f"{config.tracker.data_path}/chkpt_step_{current_step}.pth")
|
||||
validation_profiler.reset()
|
||||
|
||||
# reset timer for next round
|
||||
timer.reset()
|
||||
# package kwargs for evaluation
|
||||
|
||||
eval_kwargs = {
|
||||
"trainer": trainer,
|
||||
"tracker": tracker,
|
||||
"text_conditioned": config.prior.condition_on_text_encodings,
|
||||
"timesteps": config.train.eval_timesteps,
|
||||
}
|
||||
|
||||
# ONLINE MODEL : COSINE : LOSS : VALIDATION SPLIT
|
||||
|
||||
eval_model(
|
||||
dataloader=eval_loader,
|
||||
loss_type=config.prior.loss_type,
|
||||
split="validation",
|
||||
use_ema=False,
|
||||
report_cosine=False,
|
||||
report_loss=True,
|
||||
**eval_kwargs,
|
||||
)
|
||||
|
||||
# EMA MODEL : COSINE : LOSS : VALIDATION DATA
|
||||
|
||||
ema_val_loss = eval_model(
|
||||
dataloader=eval_loader,
|
||||
loss_type=config.prior.loss_type,
|
||||
split="validation",
|
||||
use_ema=True,
|
||||
report_cosine=True,
|
||||
report_loss=True,
|
||||
**eval_kwargs,
|
||||
)
|
||||
|
||||
tracker.log(
|
||||
{
|
||||
"tracking/validation length (minutes)": validation_profiler.elapsed()
|
||||
/ 60
|
||||
}
|
||||
)
|
||||
|
||||
# check if the ema validation is the lowest seen yet
|
||||
|
||||
if ema_val_loss < best_validation_loss:
|
||||
best_validation_loss = ema_val_loss
|
||||
|
||||
# go save the model as best
|
||||
|
||||
save_trainer(
|
||||
trainer=trainer,
|
||||
tracker=tracker,
|
||||
is_best=True,
|
||||
is_latest=False,
|
||||
samples_seen=samples_seen,
|
||||
epoch=epoch,
|
||||
best_validation_loss=best_validation_loss,
|
||||
)
|
||||
|
||||
# reset timer for validaiton
|
||||
|
||||
validation_countdown.reset()
|
||||
|
||||
elif eval_delta is None:
|
||||
click.secho(
|
||||
f"Error occured reading the eval time on rank: {trainer.device}",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
# save as latest model on schedule
|
||||
|
||||
save_delta = pad_gather_reduce(trainer, save_timer.elapsed(), method="min")
|
||||
|
||||
if save_delta != None and save_delta >= config.train.save_every_seconds:
|
||||
save_trainer(
|
||||
trainer=trainer,
|
||||
tracker=tracker,
|
||||
is_best=False,
|
||||
is_latest=True,
|
||||
samples_seen=samples_seen,
|
||||
epoch=epoch,
|
||||
best_validation_loss=best_validation_loss,
|
||||
)
|
||||
|
||||
save_timer.reset()
|
||||
|
||||
elif save_delta is None:
|
||||
click.secho(
|
||||
f"Error occured reading the save time on rank: {trainer.device}",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
# evaluate on test data
|
||||
|
||||
eval_model(
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(f"Starting Test", fg="red")
|
||||
|
||||
# save one last time as latest before beginning validation
|
||||
|
||||
save_trainer(
|
||||
tracker=tracker,
|
||||
trainer=trainer,
|
||||
is_best=False,
|
||||
is_latest=True,
|
||||
samples_seen=samples_seen,
|
||||
epoch=epoch,
|
||||
best_validation_loss=best_validation_loss,
|
||||
)
|
||||
|
||||
test_loss = eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=test_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="test",
|
||||
split="test",
|
||||
tracker=tracker,
|
||||
use_ema=True,
|
||||
report_cosine=False,
|
||||
report_loss=True,
|
||||
timesteps=config.train.eval_timesteps,
|
||||
loss_type=config.prior.loss_type,
|
||||
)
|
||||
|
||||
report_cosine_sims(
|
||||
trainer,
|
||||
test_loader,
|
||||
config.prior.condition_on_text_encodings,
|
||||
tracker,
|
||||
tracker_context="test",
|
||||
)
|
||||
if test_loss < best_validation_loss:
|
||||
best_validation_loss = test_loss
|
||||
|
||||
# go save the model as best
|
||||
|
||||
save_trainer(
|
||||
trainer=trainer,
|
||||
tracker=tracker,
|
||||
is_best=True,
|
||||
is_latest=False,
|
||||
samples_seen=samples_seen,
|
||||
epoch=epoch,
|
||||
best_validation_loss=test_loss,
|
||||
)
|
||||
|
||||
|
||||
def initialize_training(config, accelerator=None):
|
||||
def initialize_training(config_file, accelerator):
|
||||
"""
|
||||
Parse the configuration file, and prepare everything necessary for training
|
||||
"""
|
||||
# load the configuration file
|
||||
if accelerator.is_main_process:
|
||||
click.secho(f"Loading configuration from {config_file}", fg="green")
|
||||
|
||||
config = TrainDiffusionPriorConfig.from_json_path(config_file)
|
||||
|
||||
# seed
|
||||
|
||||
set_seed(config.train.random_seed)
|
||||
|
||||
# get a device
|
||||
|
||||
if accelerator:
|
||||
device = accelerator.device
|
||||
click.secho(f"Accelerating on: {device}", fg="yellow")
|
||||
else:
|
||||
if torch.cuda.is_available():
|
||||
click.secho("GPU detected, defaulting to cuda:0", fg="yellow")
|
||||
device = "cuda:0"
|
||||
else:
|
||||
click.secho("No GPU detected...using cpu", fg="yellow")
|
||||
device = "cpu"
|
||||
device = accelerator.device
|
||||
|
||||
# make the trainer (will automatically distribute if possible & configured)
|
||||
|
||||
trainer = make_model(config.prior, config.train, device, accelerator).to(device)
|
||||
trainer: DiffusionPriorTrainer = make_model(
|
||||
config.prior, config.train, device, accelerator
|
||||
).to(device)
|
||||
|
||||
# create a tracker
|
||||
|
||||
tracker = create_tracker(
|
||||
accelerator, config, config_file, dummy=accelerator.process_index != 0
|
||||
)
|
||||
|
||||
# reload from chcekpoint
|
||||
|
||||
if config.load.resume == True:
|
||||
click.secho(f"Loading checkpoint: {config.load.source}", fg="cyan")
|
||||
trainer.load(config.load.source)
|
||||
if tracker.can_recall:
|
||||
current_epoch, best_validation_loss, samples_seen = recall_trainer(
|
||||
tracker=tracker, trainer=trainer
|
||||
)
|
||||
|
||||
# display best values
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(f"Current Epoch: {current_epoch} | Best Val Loss: {best_validation_loss} | Samples Seen: {samples_seen}", fg="yellow")
|
||||
|
||||
# update config to reflect recalled values
|
||||
config.train.num_samples_seen = samples_seen
|
||||
config.train.current_epoch = current_epoch
|
||||
config.train.best_validation_loss = best_validation_loss
|
||||
|
||||
# fetch and prepare data
|
||||
|
||||
if trainer.is_main_process():
|
||||
click.secho("Grabbing data from source", fg="blue", blink=True)
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho("Grabbing data...", fg="blue", blink=True)
|
||||
|
||||
trainer.accelerator.wait_for_everyone()
|
||||
img_reader = get_reader(
|
||||
text_conditioned=trainer.text_conditioned,
|
||||
img_url=config.data.image_url,
|
||||
meta_url=config.data.meta_url,
|
||||
)
|
||||
|
||||
# calculate start point within epoch
|
||||
|
||||
trainer.accelerator.wait_for_everyone()
|
||||
|
||||
train_loader, eval_loader, test_loader = make_splits(
|
||||
text_conditioned=trainer.text_conditioned,
|
||||
batch_size=config.data.batch_size,
|
||||
num_data_points=NUM_DATA_POINTS,
|
||||
num_data_points=config.data.num_data_points,
|
||||
train_split=config.data.splits.train,
|
||||
eval_split=config.data.splits.val,
|
||||
image_reader=img_reader,
|
||||
rank=accelerator.state.process_index if exists(accelerator) else 0,
|
||||
world_size=accelerator.state.num_processes if exists(accelerator) else 1,
|
||||
start=START,
|
||||
rank=accelerator.state.process_index,
|
||||
world_size=accelerator.state.num_processes,
|
||||
start=0,
|
||||
)
|
||||
|
||||
# wait for everyone to load data before continuing
|
||||
trainer.wait_for_everyone()
|
||||
# update the start point to finish out the epoch on a resumed run
|
||||
|
||||
if tracker.can_recall:
|
||||
samples_seen = config.train.num_samples_seen
|
||||
length = (
|
||||
config.data.num_data_points
|
||||
if samples_seen <= img_reader.count
|
||||
else img_reader.count
|
||||
)
|
||||
scaled_samples = length * config.train.current_epoch
|
||||
start_point = (
|
||||
scaled_samples - samples_seen if scaled_samples > samples_seen else samples_seen
|
||||
)
|
||||
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(f"Resuming at sample: {start_point}", fg="yellow")
|
||||
|
||||
train_loader.dataset.set_start(start_point)
|
||||
|
||||
# start training
|
||||
|
||||
if trainer.accelerator.is_main_process:
|
||||
click.secho(
|
||||
f"Beginning Prior Training : Distributed={accelerator.state.distributed_type != accelerate_dataclasses.DistributedType.NO}",
|
||||
fg="yellow",
|
||||
)
|
||||
|
||||
train(
|
||||
trainer=trainer,
|
||||
tracker=tracker,
|
||||
train_loader=train_loader,
|
||||
eval_loader=eval_loader,
|
||||
test_loader=test_loader,
|
||||
@@ -400,23 +757,13 @@ def initialize_training(config, accelerator=None):
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("--hfa", default=True)
|
||||
@click.option("--config_path", default="configs/prior.json")
|
||||
def main(hfa, config_path):
|
||||
# start HFA if requested
|
||||
if hfa:
|
||||
accelerator = Accelerator()
|
||||
else:
|
||||
accelerator = None
|
||||
@click.option("--config_file", default="configs/train_prior_config.example.json")
|
||||
def main(config_file):
|
||||
# start HFA
|
||||
accelerator = Accelerator()
|
||||
|
||||
# load the configuration file on main process
|
||||
if not exists(accelerator) or accelerator.is_main_process:
|
||||
click.secho(f"Loading configuration from {config_path}", fg="green")
|
||||
|
||||
config = TrainDiffusionPriorConfig.from_json_path(config_path)
|
||||
|
||||
# send config to get processed
|
||||
initialize_training(config, accelerator)
|
||||
# setup training
|
||||
initialize_training(config_file, accelerator)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user