mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
748c7fe7af | ||
|
|
80046334ad | ||
|
|
36fb46a95e | ||
|
|
07abfcf45b | ||
|
|
2e35a9967d | ||
|
|
406e75043f | ||
|
|
9646dfc0e6 |
18
README.md
18
README.md
@@ -371,6 +371,7 @@ loss.backward()
|
||||
unet1 = Unet(
|
||||
dim = 128,
|
||||
image_embed_dim = 512,
|
||||
text_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
@@ -395,7 +396,7 @@ decoder = Decoder(
|
||||
).cuda()
|
||||
|
||||
for unet_number in (1, 2):
|
||||
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
|
||||
loss = decoder(images, text = text, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
|
||||
loss.backward()
|
||||
|
||||
# do above for many steps
|
||||
@@ -860,25 +861,23 @@ unet1 = Unet(
|
||||
text_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8)
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
cond_on_text_encodings = True,
|
||||
).cuda()
|
||||
|
||||
unet2 = Unet(
|
||||
dim = 16,
|
||||
image_embed_dim = 512,
|
||||
text_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults = (1, 2, 4, 8, 16),
|
||||
cond_on_text_encodings = True
|
||||
).cuda()
|
||||
|
||||
decoder = Decoder(
|
||||
unet = (unet1, unet2),
|
||||
image_sizes = (128, 256),
|
||||
clip = clip,
|
||||
timesteps = 1000,
|
||||
condition_on_text_encodings = True
|
||||
timesteps = 1000
|
||||
).cuda()
|
||||
|
||||
decoder_trainer = DecoderTrainer(
|
||||
@@ -903,8 +902,8 @@ for unet_number in (1, 2):
|
||||
# after much training
|
||||
# you can sample from the exponentially moving averaged unets as so
|
||||
|
||||
mock_image_embed = torch.randn(4, 512).cuda()
|
||||
images = decoder_trainer.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
|
||||
mock_image_embed = torch.randn(32, 512).cuda()
|
||||
images = decoder_trainer.sample(image_embed = mock_image_embed, text = text) # (4, 3, 256, 256)
|
||||
```
|
||||
|
||||
### Diffusion Prior Training
|
||||
@@ -1112,7 +1111,8 @@ For detailed information on training the diffusion prior, please refer to the [d
|
||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||
- [x] speed up inference, read up on papers (ddim)
|
||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
||||
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -1357,7 +1357,8 @@ class ResnetBlock(nn.Module):
|
||||
*,
|
||||
cond_dim = None,
|
||||
time_cond_dim = None,
|
||||
groups = 8
|
||||
groups = 8,
|
||||
cosine_sim_cross_attn = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -1377,7 +1378,8 @@ class ResnetBlock(nn.Module):
|
||||
'b (h w) c',
|
||||
CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1412,11 +1414,12 @@ class CrossAttention(nn.Module):
|
||||
heads = 8,
|
||||
dropout = 0.,
|
||||
norm_context = False,
|
||||
pb_relax_alpha = 32 ** 2
|
||||
cosine_sim = False,
|
||||
cosine_sim_scale = 16
|
||||
):
|
||||
super().__init__()
|
||||
self.pb_relax_alpha = pb_relax_alpha
|
||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
||||
self.cosine_sim = cosine_sim
|
||||
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
@@ -1452,7 +1455,10 @@ class CrossAttention(nn.Module):
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
if self.cosine_sim:
|
||||
q, k = map(l2norm, (q, k))
|
||||
|
||||
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||
|
||||
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
@@ -1462,9 +1468,6 @@ class CrossAttention(nn.Module):
|
||||
mask = rearrange(mask, 'b j -> b 1 1 j')
|
||||
sim = sim.masked_fill(~mask, max_neg_value)
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
sim = sim * self.pb_relax_alpha
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
@@ -1494,6 +1497,7 @@ class LinearAttention(nn.Module):
|
||||
|
||||
def forward(self, fmap):
|
||||
h, x, y = self.heads, *fmap.shape[-2:]
|
||||
seq_len = x * y
|
||||
|
||||
fmap = self.norm(fmap)
|
||||
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
||||
@@ -1503,6 +1507,9 @@ class LinearAttention(nn.Module):
|
||||
k = k.softmax(dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
v = l2norm(v)
|
||||
|
||||
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
|
||||
|
||||
context = einsum('b n d, b n e -> b d e', k, v)
|
||||
out = einsum('b n d, b d e -> b n e', q, context)
|
||||
@@ -1538,6 +1545,38 @@ class CrossEmbedLayer(nn.Module):
|
||||
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
||||
return torch.cat(fmaps, dim = 1)
|
||||
|
||||
class UpsampleCombiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
enabled = False,
|
||||
dim_ins = tuple(),
|
||||
dim_outs = tuple()
|
||||
):
|
||||
super().__init__()
|
||||
assert len(dim_ins) == len(dim_outs)
|
||||
self.enabled = enabled
|
||||
|
||||
if not self.enabled:
|
||||
self.dim_out = dim
|
||||
return
|
||||
|
||||
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
||||
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
||||
|
||||
def forward(self, x, fmaps = None):
|
||||
target_size = x.shape[-1]
|
||||
|
||||
fmaps = default(fmaps, tuple())
|
||||
|
||||
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
||||
return x
|
||||
|
||||
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
|
||||
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
||||
return torch.cat((x, *outs), dim = 1)
|
||||
|
||||
class Unet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -1558,6 +1597,7 @@ class Unet(nn.Module):
|
||||
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
||||
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||
sparse_attn = False,
|
||||
cosine_sim_cross_attn = False,
|
||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||
cond_on_text_encodings = False,
|
||||
max_text_len = 256,
|
||||
@@ -1575,6 +1615,7 @@ class Unet(nn.Module):
|
||||
scale_skip_connection = False,
|
||||
pixel_shuffle_upsample = True,
|
||||
final_conv_kernel_size = 1,
|
||||
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1700,9 +1741,13 @@ class Unet(nn.Module):
|
||||
|
||||
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
||||
|
||||
# prepare resnet klass
|
||||
|
||||
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
|
||||
|
||||
# give memory efficient unet an initial resnet block
|
||||
|
||||
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
|
||||
# layers
|
||||
|
||||
@@ -1710,7 +1755,8 @@ class Unet(nn.Module):
|
||||
self.ups = nn.ModuleList([])
|
||||
num_resolutions = len(in_out)
|
||||
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
|
||||
is_first = ind == 0
|
||||
@@ -1728,17 +1774,17 @@ class Unet(nn.Module):
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
||||
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
|
||||
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_attn = create_self_attn(mid_dim)
|
||||
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
@@ -1752,14 +1798,27 @@ class Unet(nn.Module):
|
||||
elif sparse_attn:
|
||||
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
|
||||
|
||||
upsample_combiner_dims.append(dim_out)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
|
||||
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
# whether to combine outputs from all upsample blocks for final resnet block
|
||||
|
||||
self.upsample_combiner = UpsampleCombiner(
|
||||
dim = dim,
|
||||
enabled = combine_upsample_fmaps,
|
||||
dim_ins = upsample_combiner_dims,
|
||||
dim_outs = (dim,) * len(upsample_combiner_dims)
|
||||
)
|
||||
|
||||
# a final resnet block
|
||||
|
||||
self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
@@ -1783,7 +1842,7 @@ class Unet(nn.Module):
|
||||
channels == self.channels and \
|
||||
cond_on_image_embeds == self.cond_on_image_embeds and \
|
||||
cond_on_text_encodings == self.cond_on_text_encodings and \
|
||||
cond_on_lowres_noise == self.cond_on_lowres_noise and \
|
||||
lowres_noise_cond == self.lowres_noise_cond and \
|
||||
channels_out == self.channels_out:
|
||||
return self
|
||||
|
||||
@@ -1953,7 +2012,8 @@ class Unet(nn.Module):
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
hiddens = []
|
||||
down_hiddens = []
|
||||
up_hiddens = []
|
||||
|
||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
||||
if exists(pre_downsample):
|
||||
@@ -1963,10 +2023,10 @@ class Unet(nn.Module):
|
||||
|
||||
for resnet_block in resnet_blocks:
|
||||
x = resnet_block(x, t, c)
|
||||
hiddens.append(x)
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
x = attn(x)
|
||||
hiddens.append(x.contiguous())
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
@@ -1978,7 +2038,7 @@ class Unet(nn.Module):
|
||||
|
||||
x = self.mid_block2(x, t, mid_c)
|
||||
|
||||
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
|
||||
for init_block, resnet_blocks, attn, upsample in self.ups:
|
||||
x = connect_skip(x)
|
||||
@@ -1989,8 +2049,12 @@ class Unet(nn.Module):
|
||||
x = resnet_block(x, t, c)
|
||||
|
||||
x = attn(x)
|
||||
|
||||
up_hiddens.append(x.contiguous())
|
||||
x = upsample(x)
|
||||
|
||||
x = self.upsample_combiner(x, up_hiddens)
|
||||
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
|
||||
x = self.final_resnet_block(x, t)
|
||||
@@ -2885,7 +2949,7 @@ class DALLE2(nn.Module):
|
||||
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
|
||||
|
||||
text_cond = text if self.decoder_need_text_cond else None
|
||||
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
|
||||
images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale)
|
||||
|
||||
if return_pil_images:
|
||||
images = list(map(self.to_pil, images.unbind(dim = 0)))
|
||||
|
||||
@@ -174,7 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
diffusion_prior,
|
||||
accelerator,
|
||||
accelerator = None,
|
||||
use_ema = True,
|
||||
lr = 3e-4,
|
||||
wd = 1e-2,
|
||||
@@ -186,8 +186,12 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(diffusion_prior, DiffusionPrior)
|
||||
assert isinstance(accelerator, Accelerator)
|
||||
|
||||
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
||||
accelerator_kwargs, kwargs = groupby_prefix_and_trim('accelerator_', kwargs)
|
||||
|
||||
if not exists(accelerator):
|
||||
accelerator = Accelerator(**accelerator_kwargs)
|
||||
|
||||
# assign some helpful member vars
|
||||
|
||||
@@ -300,7 +304,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
# all processes need to load checkpoint. no restriction here
|
||||
if isinstance(path_or_state, str):
|
||||
path = Path(path)
|
||||
path = Path(path_or_state)
|
||||
assert path.exists()
|
||||
loaded_obj = torch.load(str(path), map_location=self.device)
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.0.5'
|
||||
__version__ = '1.4.0'
|
||||
|
||||
Reference in New Issue
Block a user