mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
10 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36fb46a95e | ||
|
|
07abfcf45b | ||
|
|
2e35a9967d | ||
|
|
406e75043f | ||
|
|
9646dfc0e6 | ||
|
|
62043acb2f | ||
|
|
417ff808e6 | ||
|
|
f3d7e226ba | ||
|
|
48a1302428 | ||
|
|
ccaa46b81b |
@@ -371,6 +371,7 @@ loss.backward()
|
||||
unet1 = Unet(
|
||||
dim = 128,
|
||||
image_embed_dim = 512,
|
||||
text_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
@@ -1112,7 +1113,8 @@ For detailed information on training the diffusion prior, please refer to the [d
|
||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||
- [x] speed up inference, read up on papers (ddim)
|
||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
||||
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -516,6 +516,17 @@ class NoiseScheduler(nn.Module):
|
||||
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
||||
)
|
||||
|
||||
def q_sample_from_to(self, x_from, from_t, to_t, noise = None):
|
||||
shape = x_from.shape
|
||||
noise = default(noise, lambda: torch.randn_like(x_from))
|
||||
|
||||
alpha = extract(self.sqrt_alphas_cumprod, from_t, shape)
|
||||
sigma = extract(self.sqrt_one_minus_alphas_cumprod, from_t, shape)
|
||||
alpha_next = extract(self.sqrt_alphas_cumprod, to_t, shape)
|
||||
sigma_next = extract(self.sqrt_one_minus_alphas_cumprod, to_t, shape)
|
||||
|
||||
return x_from * (alpha_next / alpha) + noise * (sigma_next * alpha - sigma * alpha_next) / alpha
|
||||
|
||||
def predict_start_from_noise(self, x_t, t, noise):
|
||||
return (
|
||||
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
||||
@@ -1492,6 +1503,7 @@ class LinearAttention(nn.Module):
|
||||
k = k.softmax(dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
v = v / (x * y)
|
||||
|
||||
context = einsum('b n d, b n e -> b d e', k, v)
|
||||
out = einsum('b n d, b d e -> b n e', q, context)
|
||||
@@ -1527,6 +1539,38 @@ class CrossEmbedLayer(nn.Module):
|
||||
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
||||
return torch.cat(fmaps, dim = 1)
|
||||
|
||||
class UpsampleCombiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
enabled = False,
|
||||
dim_ins = tuple(),
|
||||
dim_outs = tuple()
|
||||
):
|
||||
super().__init__()
|
||||
assert len(dim_ins) == len(dim_outs)
|
||||
self.enabled = enabled
|
||||
|
||||
if not self.enabled:
|
||||
self.dim_out = dim
|
||||
return
|
||||
|
||||
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
||||
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
||||
|
||||
def forward(self, x, fmaps = None):
|
||||
target_size = x.shape[-1]
|
||||
|
||||
fmaps = default(fmaps, tuple())
|
||||
|
||||
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
||||
return x
|
||||
|
||||
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
|
||||
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
||||
return torch.cat((x, *outs), dim = 1)
|
||||
|
||||
class Unet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -1564,6 +1608,7 @@ class Unet(nn.Module):
|
||||
scale_skip_connection = False,
|
||||
pixel_shuffle_upsample = True,
|
||||
final_conv_kernel_size = 1,
|
||||
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1699,7 +1744,8 @@ class Unet(nn.Module):
|
||||
self.ups = nn.ModuleList([])
|
||||
num_resolutions = len(in_out)
|
||||
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
skip_connect_dims = [] # keeping track of skip connection dimensions
|
||||
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
|
||||
is_first = ind == 0
|
||||
@@ -1741,6 +1787,8 @@ class Unet(nn.Module):
|
||||
elif sparse_attn:
|
||||
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
|
||||
|
||||
upsample_combiner_dims.append(dim_out)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
@@ -1748,7 +1796,18 @@ class Unet(nn.Module):
|
||||
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
|
||||
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
# whether to combine outputs from all upsample blocks for final resnet block
|
||||
|
||||
self.upsample_combiner = UpsampleCombiner(
|
||||
dim = dim,
|
||||
enabled = combine_upsample_fmaps,
|
||||
dim_ins = upsample_combiner_dims,
|
||||
dim_outs = (dim,) * len(upsample_combiner_dims)
|
||||
)
|
||||
|
||||
# a final resnet block
|
||||
|
||||
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
@@ -1942,7 +2001,8 @@ class Unet(nn.Module):
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
hiddens = []
|
||||
down_hiddens = []
|
||||
up_hiddens = []
|
||||
|
||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
||||
if exists(pre_downsample):
|
||||
@@ -1952,10 +2012,10 @@ class Unet(nn.Module):
|
||||
|
||||
for resnet_block in resnet_blocks:
|
||||
x = resnet_block(x, t, c)
|
||||
hiddens.append(x)
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
x = attn(x)
|
||||
hiddens.append(x.contiguous())
|
||||
down_hiddens.append(x.contiguous())
|
||||
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
@@ -1967,7 +2027,7 @@ class Unet(nn.Module):
|
||||
|
||||
x = self.mid_block2(x, t, mid_c)
|
||||
|
||||
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
|
||||
for init_block, resnet_blocks, attn, upsample in self.ups:
|
||||
x = connect_skip(x)
|
||||
@@ -1978,8 +2038,12 @@ class Unet(nn.Module):
|
||||
x = resnet_block(x, t, c)
|
||||
|
||||
x = attn(x)
|
||||
|
||||
up_hiddens.append(x.contiguous())
|
||||
x = upsample(x)
|
||||
|
||||
x = self.upsample_combiner(x, up_hiddens)
|
||||
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
|
||||
x = self.final_resnet_block(x, t)
|
||||
@@ -2432,14 +2496,18 @@ class Decoder(nn.Module):
|
||||
is_latent_diffusion = False,
|
||||
lowres_noise_level = None,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
device = self.device
|
||||
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
if exists(inpaint_image):
|
||||
is_inpaint = exists(inpaint_image)
|
||||
resample_times = inpaint_resample_times if is_inpaint else 1
|
||||
|
||||
if is_inpaint:
|
||||
inpaint_image = self.normalize_img(inpaint_image)
|
||||
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||
@@ -2449,31 +2517,40 @@ class Decoder(nn.Module):
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||
times = torch.full((b,), i, device = device, dtype = torch.long)
|
||||
for time in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||
is_last_timestep = time == 0
|
||||
|
||||
if exists(inpaint_image):
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
for r in reversed(range(0, resample_times)):
|
||||
is_last_resample_step = r == 0
|
||||
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
img,
|
||||
times,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
lowres_noise_level = lowres_noise_level,
|
||||
predict_x_start = predict_x_start,
|
||||
noise_scheduler = noise_scheduler,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
times = torch.full((b,), time, device = device, dtype = torch.long)
|
||||
|
||||
if exists(inpaint_image):
|
||||
if is_inpaint:
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
img,
|
||||
times,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
lowres_noise_level = lowres_noise_level,
|
||||
predict_x_start = predict_x_start,
|
||||
noise_scheduler = noise_scheduler,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
|
||||
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
||||
# in repaint, you renoise and resample up to 10 times every step
|
||||
img = noise_scheduler.q_sample_from_to(img, times - 1, times)
|
||||
|
||||
if is_inpaint:
|
||||
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||
|
||||
unnormalize_img = self.unnormalize_img(img)
|
||||
@@ -2497,7 +2574,8 @@ class Decoder(nn.Module):
|
||||
is_latent_diffusion = False,
|
||||
lowres_noise_level = None,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
||||
|
||||
@@ -2506,7 +2584,10 @@ class Decoder(nn.Module):
|
||||
times = list(reversed(times.int().tolist()))
|
||||
time_pairs = list(zip(times[:-1], times[1:]))
|
||||
|
||||
if exists(inpaint_image):
|
||||
is_inpaint = exists(inpaint_image)
|
||||
resample_times = inpaint_resample_times if is_inpaint else 1
|
||||
|
||||
if is_inpaint:
|
||||
inpaint_image = self.normalize_img(inpaint_image)
|
||||
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||
@@ -2519,39 +2600,49 @@ class Decoder(nn.Module):
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
|
||||
alpha = alphas[time]
|
||||
alpha_next = alphas[time_next]
|
||||
is_last_timestep = time_next == 0
|
||||
|
||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||
for r in reversed(range(0, resample_times)):
|
||||
is_last_resample_step = r == 0
|
||||
|
||||
if exists(inpaint_image):
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
alpha = alphas[time]
|
||||
alpha_next = alphas[time_next]
|
||||
|
||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||
|
||||
if learned_variance:
|
||||
pred, _ = pred.chunk(2, dim = 1)
|
||||
if is_inpaint:
|
||||
# following the repaint paper
|
||||
# https://arxiv.org/abs/2201.09865
|
||||
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||
|
||||
if predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||
|
||||
if clip_denoised:
|
||||
x_start = self.dynamic_threshold(x_start)
|
||||
if learned_variance:
|
||||
pred, _ = pred.chunk(2, dim = 1)
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(img) if time_next > 0 else 0.
|
||||
if predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
|
||||
img = x_start * alpha_next.sqrt() + \
|
||||
c1 * noise + \
|
||||
c2 * pred_noise
|
||||
if clip_denoised:
|
||||
x_start = self.dynamic_threshold(x_start)
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
||||
|
||||
img = x_start * alpha_next.sqrt() + \
|
||||
c1 * noise + \
|
||||
c2 * pred_noise
|
||||
|
||||
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
||||
# in repaint, you renoise and resample up to 10 times every step
|
||||
time_next_cond = torch.full((batch,), time_next, device = device, dtype = torch.long)
|
||||
img = noise_scheduler.q_sample_from_to(img, time_next_cond, time_cond)
|
||||
|
||||
if exists(inpaint_image):
|
||||
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||
@@ -2658,7 +2749,8 @@ class Decoder(nn.Module):
|
||||
stop_at_unet_number = None,
|
||||
distributed = False,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||
|
||||
@@ -2730,7 +2822,8 @@ class Decoder(nn.Module):
|
||||
noise_scheduler = noise_scheduler,
|
||||
timesteps = sample_timesteps,
|
||||
inpaint_image = inpaint_image,
|
||||
inpaint_mask = inpaint_mask
|
||||
inpaint_mask = inpaint_mask,
|
||||
inpaint_resample_times = inpaint_resample_times
|
||||
)
|
||||
|
||||
img = vae.decode(img)
|
||||
@@ -2845,7 +2938,7 @@ class DALLE2(nn.Module):
|
||||
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
|
||||
|
||||
text_cond = text if self.decoder_need_text_cond else None
|
||||
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
|
||||
images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale)
|
||||
|
||||
if return_pil_images:
|
||||
images = list(map(self.to_pil, images.unbind(dim = 0)))
|
||||
|
||||
@@ -528,8 +528,12 @@ class Tracker:
|
||||
elif save_type == 'model':
|
||||
if isinstance(trainer, DiffusionPriorTrainer):
|
||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||
state_dict = trainer.accelerator.unwrap_model(prior).state_dict()
|
||||
torch.save(state_dict, file_path)
|
||||
prior: DiffusionPrior = trainer.accelerator.unwrap_model(prior)
|
||||
# Remove CLIP if it is part of the model
|
||||
original_clip = prior.clip
|
||||
prior.clip = None
|
||||
model_state_dict = prior.state_dict()
|
||||
prior.clip = original_clip
|
||||
elif isinstance(trainer, DecoderTrainer):
|
||||
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||
# Remove CLIP if it is part of the model
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
|
||||
|
||||
from x_clip import CLIP as XCLIP
|
||||
from coca_pytorch import CoCa
|
||||
@@ -25,11 +25,9 @@ def exists(val):
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def ListOrTuple(inner_type):
|
||||
return Union[List[inner_type], Tuple[inner_type]]
|
||||
|
||||
def SingularOrIterable(inner_type):
|
||||
return Union[inner_type, ListOrTuple(inner_type)]
|
||||
InnerType = TypeVar('InnerType')
|
||||
ListOrTuple = Union[List[InnerType], Tuple[InnerType]]
|
||||
SingularOrIterable = Union[InnerType, ListOrTuple[InnerType]]
|
||||
|
||||
# general pydantic classes
|
||||
|
||||
@@ -222,13 +220,13 @@ class TrainDiffusionPriorConfig(BaseModel):
|
||||
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
dim_mults: ListOrTuple[int]
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
self_attn: ListOrTuple(int)
|
||||
self_attn: ListOrTuple[int]
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
init_cross_embed: bool = True
|
||||
@@ -237,16 +235,16 @@ class UnetConfig(BaseModel):
|
||||
extra = "allow"
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
unets: ListOrTuple[UnetConfig]
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
image_sizes: ListOrTuple[int] = None
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
sample_timesteps: Optional[SingularOrIterable(int)] = None
|
||||
sample_timesteps: Optional[SingularOrIterable[int]] = None
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: ListOrTuple(str) = 'cosine'
|
||||
learned_variance: bool = True
|
||||
beta_schedule: ListOrTuple[str] = None # None means all cosine
|
||||
learned_variance: SingularOrIterable[bool] = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
|
||||
@@ -305,11 +303,11 @@ class DecoderDataConfig(BaseModel):
|
||||
|
||||
class DecoderTrainConfig(BaseModel):
|
||||
epochs: int = 20
|
||||
lr: SingularOrIterable(float) = 1e-4
|
||||
wd: SingularOrIterable(float) = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable(int)] = None
|
||||
lr: SingularOrIterable[float] = 1e-4
|
||||
wd: SingularOrIterable[float] = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable[int]] = None
|
||||
find_unused_parameters: bool = True
|
||||
max_grad_norm: SingularOrIterable(float) = 0.5
|
||||
max_grad_norm: SingularOrIterable[float] = 0.5
|
||||
save_every_n_samples: int = 100000
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
@@ -320,7 +318,7 @@ class DecoderTrainConfig(BaseModel):
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
|
||||
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
|
||||
@@ -300,7 +300,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
# all processes need to load checkpoint. no restriction here
|
||||
if isinstance(path_or_state, str):
|
||||
path = Path(path)
|
||||
path = Path(path_or_state)
|
||||
assert path.exists()
|
||||
loaded_obj = torch.load(str(path), map_location=self.device)
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.0.1'
|
||||
__version__ = '1.2.1'
|
||||
|
||||
Reference in New Issue
Block a user