mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 12:04:24 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f23fab7ef7 | ||
|
|
857b9fbf1e |
@@ -1107,13 +1107,20 @@ class Block(nn.Module):
|
||||
groups = 8
|
||||
):
|
||||
super().__init__()
|
||||
self.block = nn.Sequential(
|
||||
nn.Conv2d(dim, dim_out, 3, padding = 1),
|
||||
nn.GroupNorm(groups, dim_out),
|
||||
nn.SiLU()
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
|
||||
self.norm = nn.GroupNorm(groups, dim_out)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x, scale_shift = None):
|
||||
x = self.project(x)
|
||||
x = self.norm(x)
|
||||
|
||||
if exists(scale_shift):
|
||||
scale, shift = scale_shift
|
||||
x = x * (scale + 1) + shift
|
||||
|
||||
x = self.act(x)
|
||||
return x
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(
|
||||
@@ -1132,7 +1139,7 @@ class ResnetBlock(nn.Module):
|
||||
if exists(time_cond_dim):
|
||||
self.time_mlp = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_cond_dim, dim_out)
|
||||
nn.Linear(time_cond_dim, dim_out * 2)
|
||||
)
|
||||
|
||||
self.cross_attn = None
|
||||
@@ -1152,11 +1159,14 @@ class ResnetBlock(nn.Module):
|
||||
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
||||
|
||||
def forward(self, x, cond = None, time_emb = None):
|
||||
h = self.block1(x)
|
||||
|
||||
scale_shift = None
|
||||
if exists(self.time_mlp) and exists(time_emb):
|
||||
time_emb = self.time_mlp(time_emb)
|
||||
h = rearrange(time_emb, 'b c -> b c 1 1') + h
|
||||
time_emb = rearrange(time_emb, 'b c -> b c 1 1')
|
||||
scale_shift = time_emb.chunk(2, dim = 1)
|
||||
|
||||
h = self.block1(x, scale_shift = scale_shift)
|
||||
|
||||
if exists(self.cross_attn):
|
||||
assert exists(cond)
|
||||
|
||||
@@ -12,6 +12,7 @@ def get_optimizer(
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
filter_by_requires_grad = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
if filter_by_requires_grad:
|
||||
@@ -21,11 +22,13 @@ def get_optimizer(
|
||||
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||
|
||||
params = set(params)
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
param_groups = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
if group_wd_params:
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -254,6 +254,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
eps = 1e-6,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -279,6 +280,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
lr = lr,
|
||||
wd = wd,
|
||||
eps = eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@@ -410,6 +412,7 @@ class DecoderTrainer(nn.Module):
|
||||
eps = 1e-8,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -435,6 +438,7 @@ class DecoderTrainer(nn.Module):
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user