Compare commits

...

3 Commits
0.4.5 ... 0.4.7

Author SHA1 Message Date
Phil Wang
0f4edff214 derived value for image preprocessing belongs to the data config class 2022-05-22 18:42:40 -07:00
Phil Wang
501a8c7c46 small cleanup 2022-05-22 15:39:38 -07:00
Phil Wang
4e49373fc5 project management 2022-05-22 15:27:40 -07:00
7 changed files with 31 additions and 30 deletions

View File

@@ -1078,6 +1078,7 @@ This library would not have gotten to this working state without the help of
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [x] use pydantic for config drive training
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
@@ -1087,11 +1088,9 @@ This library would not have gotten to this working state without the help of
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations

View File

@@ -64,6 +64,22 @@ class DecoderDataConfig(BaseModel):
resample_train: bool = False
preprocessing: Dict[str, Any] = {'ToTensor': True}
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: float = 1e-4
@@ -117,19 +133,3 @@ class TrainDecoderConfig(BaseModel):
with open(json_path) as f:
config = json.load(f)
return cls(**config)
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.data.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)

View File

@@ -133,12 +133,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior

View File

@@ -1,5 +1,7 @@
import time
# time helpers
class Timer:
def __init__(self):
self.reset()
@@ -9,3 +11,9 @@ class Timer:
def elapsed(self):
return time.time() - self.last_time
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.4.5',
version = '0.4.7',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',

View File

@@ -1,9 +1,9 @@
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch.trainer import DecoderTrainer, print_ribbon
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.utils import Timer, print_ribbon
import torchvision
import torch
@@ -420,7 +420,7 @@ def initialize_training(config):
dataloaders = create_dataloaders (
available_shards=all_shards,
img_preproc = config.img_preproc,
img_preproc = config.data.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,

View File

@@ -9,10 +9,10 @@ from torch import nn
from dalle2_pytorch.dataloaders import make_splits
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.utils import Timer, print_ribbon
from embedding_reader import EmbeddingReader