mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 15:04:33 +01:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c12e067178 | ||
|
|
c6629c431a | ||
|
|
7ac2fc79f2 |
99
configs/train_decoder_config.example.json
Normal file
99
configs/train_decoder_config.example.json
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
{
|
||||||
|
"unets": [
|
||||||
|
{
|
||||||
|
"dim": 128,
|
||||||
|
"image_embed_dim": 768,
|
||||||
|
"cond_dim": 64,
|
||||||
|
"channels": 3,
|
||||||
|
"dim_mults": [1, 2, 4, 8],
|
||||||
|
"attn_dim_head": 32,
|
||||||
|
"attn_heads": 16
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"decoder": {
|
||||||
|
"image_sizes": [64],
|
||||||
|
"channels": 3,
|
||||||
|
"timesteps": 1000,
|
||||||
|
"loss_type": "l2",
|
||||||
|
"beta_schedule": "cosine",
|
||||||
|
"learned_variance": true
|
||||||
|
},
|
||||||
|
"data": {
|
||||||
|
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
|
||||||
|
"embeddings_url": "s3://bucket/embeddings/path/",
|
||||||
|
"num_workers": 4,
|
||||||
|
"batch_size": 64,
|
||||||
|
"start_shard": 0,
|
||||||
|
"end_shard": 9999999,
|
||||||
|
"shard_width": 6,
|
||||||
|
"index_width": 4,
|
||||||
|
"splits": {
|
||||||
|
"train": 0.75,
|
||||||
|
"val": 0.15,
|
||||||
|
"test": 0.1
|
||||||
|
},
|
||||||
|
"shuffle_train": true,
|
||||||
|
"resample_train": false,
|
||||||
|
"preprocessing": {
|
||||||
|
"RandomResizedCrop": {
|
||||||
|
"size": [128, 128],
|
||||||
|
"scale": [0.75, 1.0],
|
||||||
|
"ratio": [1.0, 1.0]
|
||||||
|
},
|
||||||
|
"ToTensor": true
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"train": {
|
||||||
|
"epochs": 20,
|
||||||
|
"lr": 1e-4,
|
||||||
|
"wd": 0.01,
|
||||||
|
"max_grad_norm": 0.5,
|
||||||
|
"save_every_n_samples": 100000,
|
||||||
|
"n_sample_images": 6,
|
||||||
|
"device": "cuda:0",
|
||||||
|
"epoch_samples": null,
|
||||||
|
"validation_samples": null,
|
||||||
|
"use_ema": true,
|
||||||
|
"ema_beta": 0.99,
|
||||||
|
"amp": false,
|
||||||
|
"save_all": false,
|
||||||
|
"save_latest": true,
|
||||||
|
"save_best": true,
|
||||||
|
"unet_training_mask": [true]
|
||||||
|
},
|
||||||
|
"evaluate": {
|
||||||
|
"n_evaluation_samples": 1000,
|
||||||
|
"FID": {
|
||||||
|
"feature": 64
|
||||||
|
},
|
||||||
|
"IS": {
|
||||||
|
"feature": 64,
|
||||||
|
"splits": 10
|
||||||
|
},
|
||||||
|
"KID": {
|
||||||
|
"feature": 64,
|
||||||
|
"subset_size": 10
|
||||||
|
},
|
||||||
|
"LPIPS": {
|
||||||
|
"net_type": "vgg",
|
||||||
|
"reduction": "mean"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"tracker": {
|
||||||
|
"tracker_type": "console",
|
||||||
|
"data_path": "./models",
|
||||||
|
|
||||||
|
"wandb_entity": "",
|
||||||
|
"wandb_project": "",
|
||||||
|
|
||||||
|
"verbose": false
|
||||||
|
},
|
||||||
|
"load": {
|
||||||
|
"source": null,
|
||||||
|
|
||||||
|
"run_path": "",
|
||||||
|
"file_path": "",
|
||||||
|
|
||||||
|
"resume": false
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,5 +1,6 @@
|
|||||||
|
import json
|
||||||
from torchvision import transforms as T
|
from torchvision import transforms as T
|
||||||
from pydantic import BaseModel, validator
|
from pydantic import BaseModel, validator, root_validator
|
||||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||||
|
|
||||||
def exists(val):
|
def exists(val):
|
||||||
@@ -38,6 +39,17 @@ class DecoderConfig(BaseModel):
|
|||||||
class Config:
|
class Config:
|
||||||
extra = "allow"
|
extra = "allow"
|
||||||
|
|
||||||
|
class TrainSplitConfig(BaseModel):
|
||||||
|
train: float = 0.75
|
||||||
|
val: float = 0.15
|
||||||
|
test: float = 0.1
|
||||||
|
|
||||||
|
@root_validator
|
||||||
|
def validate_all(cls, fields):
|
||||||
|
if sum([*fields.values()]) != 1.:
|
||||||
|
raise ValueError(f'{fields.keys()} must sum to 1.0')
|
||||||
|
return fields
|
||||||
|
|
||||||
class DecoderDataConfig(BaseModel):
|
class DecoderDataConfig(BaseModel):
|
||||||
webdataset_base_url: str # path to a webdataset with jpg images
|
webdataset_base_url: str # path to a webdataset with jpg images
|
||||||
embeddings_url: str # path to .npy files with embeddings
|
embeddings_url: str # path to .npy files with embeddings
|
||||||
@@ -47,11 +59,7 @@ class DecoderDataConfig(BaseModel):
|
|||||||
end_shard: int = 9999999
|
end_shard: int = 9999999
|
||||||
shard_width: int = 6
|
shard_width: int = 6
|
||||||
index_width: int = 4
|
index_width: int = 4
|
||||||
splits: Dict[str, float] = {
|
splits: TrainSplitConfig
|
||||||
'train': 0.75,
|
|
||||||
'val': 0.15,
|
|
||||||
'test': 0.1
|
|
||||||
}
|
|
||||||
shuffle_train: bool = True
|
shuffle_train: bool = True
|
||||||
resample_train: bool = False
|
resample_train: bool = False
|
||||||
preprocessing: Dict[str, Any] = {'ToTensor': True}
|
preprocessing: Dict[str, Any] = {'ToTensor': True}
|
||||||
@@ -104,6 +112,12 @@ class TrainDecoderConfig(BaseModel):
|
|||||||
tracker: TrackerConfig
|
tracker: TrackerConfig
|
||||||
load: DecoderLoadConfig
|
load: DecoderLoadConfig
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_json_path(cls, json_path):
|
||||||
|
with open(json_path) as f:
|
||||||
|
config = json.load(f)
|
||||||
|
return cls(**config)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def img_preproc(self):
|
def img_preproc(self):
|
||||||
def _get_transformation(transformation_name, **kwargs):
|
def _get_transformation(transformation_name, **kwargs):
|
||||||
|
|||||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
|||||||
'dream = dalle2_pytorch.cli:dream'
|
'dream = dalle2_pytorch.cli:dream'
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
version = '0.4.0',
|
version = '0.4.2',
|
||||||
license='MIT',
|
license='MIT',
|
||||||
description = 'DALL-E 2',
|
description = 'DALL-E 2',
|
||||||
author = 'Phil Wang',
|
author = 'Phil Wang',
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
|
|||||||
from dalle2_pytorch.train_configs import TrainDecoderConfig
|
from dalle2_pytorch.train_configs import TrainDecoderConfig
|
||||||
from dalle2_pytorch.utils import Timer
|
from dalle2_pytorch.utils import Timer
|
||||||
|
|
||||||
import json
|
|
||||||
import torchvision
|
import torchvision
|
||||||
import torch
|
import torch
|
||||||
from torchmetrics.image.fid import FrechetInceptionDistance
|
from torchmetrics.image.fid import FrechetInceptionDistance
|
||||||
@@ -422,9 +421,9 @@ def initialize_training(config):
|
|||||||
dataloaders = create_dataloaders (
|
dataloaders = create_dataloaders (
|
||||||
available_shards=all_shards,
|
available_shards=all_shards,
|
||||||
img_preproc = config.img_preproc,
|
img_preproc = config.img_preproc,
|
||||||
train_prop = config.data["splits"]["train"],
|
train_prop = config.data.splits.train,
|
||||||
val_prop = config.data["splits"]["val"],
|
val_prop = config.data.splits.val,
|
||||||
test_prop = config.data["splits"]["test"],
|
test_prop = config.data.splits.test,
|
||||||
n_sample_images=config.train.n_sample_images,
|
n_sample_images=config.train.n_sample_images,
|
||||||
**config.data.dict()
|
**config.data.dict()
|
||||||
)
|
)
|
||||||
@@ -449,9 +448,7 @@ def initialize_training(config):
|
|||||||
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
|
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
|
||||||
def main(config_file):
|
def main(config_file):
|
||||||
print("Recalling config from {}".format(config_file))
|
print("Recalling config from {}".format(config_file))
|
||||||
with open(config_file) as f:
|
config = TrainDecoderConfig.from_json_path(config_file)
|
||||||
config = json.load(f)
|
|
||||||
config = TrainDecoderConfig(**config)
|
|
||||||
initialize_training(config)
|
initialize_training(config)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user