Compare commits

...

256 Commits

Author SHA1 Message Date
Phil Wang
c12e067178 let the pydantic config base model take care of loading configuration from json path 2022-05-22 14:47:23 -07:00
Phil Wang
c6629c431a make training splits into its own pydantic base model, validate it sums to 1, make decoder script cleaner 2022-05-22 14:43:22 -07:00
Phil Wang
7ac2fc79f2 add renamed train decoder json file 2022-05-22 14:32:50 -07:00
Phil Wang
a1ef023193 use pydantic to manage decoder training configs + defaults and refactor training script 2022-05-22 14:27:40 -07:00
Phil Wang
d49eca62fa dep 2022-05-21 11:27:52 -07:00
Phil Wang
8aab69b91e final thought 2022-05-21 10:47:45 -07:00
Phil Wang
b432df2f7b final cleanup to decoder script 2022-05-21 10:42:16 -07:00
Phil Wang
ebaa0d28c2 product management 2022-05-21 10:30:52 -07:00
Phil Wang
8b0d459b25 move config parsing logic to own file, consider whether to find an off-the-shelf solution at future date 2022-05-21 10:30:10 -07:00
Phil Wang
0064661729 small cleanup of decoder train script 2022-05-21 10:17:13 -07:00
Phil Wang
b895f52843 appreciation section 2022-05-21 08:32:12 -07:00
Phil Wang
80497e9839 accept unets as list for decoder 2022-05-20 20:31:26 -07:00
Phil Wang
f526f14d7c bump 2022-05-20 20:20:40 -07:00
Phil Wang
8997f178d6 small cleanup with timer 2022-05-20 20:05:01 -07:00
Aidan Dempster
022c94e443 Added single GPU training script for decoder (#108)
Added config files for training

Changed example image generation to be more efficient

Added configuration description to README

Removed unused import
2022-05-20 19:46:19 -07:00
Phil Wang
430961cb97 it was correct the first time, my bad 2022-05-20 18:05:15 -07:00
Phil Wang
721f9687c1 fix wandb logging in tracker, and do some cleanup 2022-05-20 17:27:43 -07:00
Aidan Dempster
e0524a6aff Implemented the wandb tracker (#106)
Added a base_path parameter to all trackers for storing any local information they need to
2022-05-20 16:39:23 -07:00
Aidan Dempster
c85e0d5c35 Update decoder dataloader (#105)
* Updated the decoder dataloader
Removed unnecessary logging for required packages
Transferred to using index width instead of shard width
Added the ability to select extra keys to return from the webdataset

* Added README for decoder loader
2022-05-20 16:38:55 -07:00
Phil Wang
db0642c4cd quick fix for @marunine 2022-05-18 20:22:52 -07:00
Phil Wang
bb86ab2404 update sample, and set default gradient clipping value for decoder training 2022-05-16 17:38:30 -07:00
Phil Wang
ae056dd67c samples 2022-05-16 13:46:35 -07:00
Phil Wang
033d6b0ce8 last update 2022-05-16 13:38:33 -07:00
Phil Wang
c7ea8748db default decoder learning rate to what was in the paper 2022-05-16 13:33:54 -07:00
Phil Wang
13382885d9 final update to dalle2 repository for a while - sampling from prior in chunks automatically with max_batch_size keyword given 2022-05-16 12:57:31 -07:00
Phil Wang
c3d4a7ffe4 update working unconditional decoder example 2022-05-16 12:50:07 -07:00
Phil Wang
164d9be444 use a decorator and take care of sampling in chunks (max_batch_size keyword), in case one is sampling a huge grid of images 2022-05-16 12:34:28 -07:00
Phil Wang
5562ec6be2 status updates 2022-05-16 12:01:54 -07:00
Phil Wang
89ff04cfe2 final tweak to EMA class 2022-05-16 11:54:34 -07:00
Phil Wang
f4016f6302 allow for overriding use of EMA during sampling in decoder trainer with use_non_ema keyword, also fix some issues with automatic normalization of images and low res conditioning image if latent diffusion is in play 2022-05-16 11:18:30 -07:00
Phil Wang
1212f7058d allow text encodings and text mask to be passed in on forward and sampling for Decoder class 2022-05-16 10:40:32 -07:00
Phil Wang
dab106d4e5 back to no_grad for now, also keep track and restore unet devices in one_unet_in_gpu contextmanager 2022-05-16 09:36:14 -07:00
Phil Wang
bb151ca6b1 unet_number on decoder trainer only needs to be passed in if there is greater than 1 unet, so that unconditional training of a single ddpm is seamless (experiment in progress locally) 2022-05-16 09:17:17 -07:00
zion
4a59dea4cf Migrate to text-conditioned prior training (#95)
* migrate to conditioned prior

* unify reader logic with a wrapper (#1)

* separate out reader logic

* support both training methods

* Update train prior to use embedding wrapper (#3)

* Support Both Methods

* bug fixes

* small bug fixes

* embedding only wrapper bug

* use smaller val perc

* final bug fix for embedding-only

Co-authored-by: nousr <>
2022-05-15 20:16:38 -07:00
Phil Wang
ecf9e8027d make sure classifier free guidance is used only if conditional dropout is present on the DiffusionPrior and Decoder classes. also make sure prior can have a different conditional scale than decoder 2022-05-15 19:09:38 -07:00
Phil Wang
36c5079bd7 LazyLinear is not mature, make users pass in text_embed_dim if text conditioning is turned on 2022-05-15 18:56:52 -07:00
Phil Wang
4a4c7ac9e6 cond drop prob for diffusion prior network should default to 0 2022-05-15 18:47:45 -07:00
Phil Wang
fad7481479 todo 2022-05-15 17:00:25 -07:00
Phil Wang
123658d082 cite Ho et al, since cascading ddpm is now trainable 2022-05-15 16:56:53 -07:00
Phil Wang
11d4e11f10 allow for training unconditional ddpm or cascading ddpms 2022-05-15 16:54:56 -07:00
Phil Wang
99778e12de trainer classes now takes care of auto-casting numpy to torch tensors, and setting correct device based on model parameter devices 2022-05-15 15:25:45 -07:00
Phil Wang
0f0011caf0 todo 2022-05-15 14:28:35 -07:00
Phil Wang
7b7a62044a use eval vs training mode to determine whether to call backprop on trainer forward 2022-05-15 14:20:59 -07:00
Phil Wang
156fe5ed9f final cleanup for the day 2022-05-15 12:38:41 -07:00
Phil Wang
5ec34bebe1 cleanup readme 2022-05-15 12:29:26 -07:00
Phil Wang
8eaacf1ac1 remove indirection 2022-05-15 12:05:45 -07:00
Phil Wang
e66c7b0249 incorrect naming 2022-05-15 11:23:52 -07:00
Phil Wang
f7cd4a0992 product management 2022-05-15 11:21:12 -07:00
Phil Wang
68e7d2f241 make sure gradient accumulation feature works even if all arguments passed in are keyword arguments 2022-05-15 11:16:16 -07:00
Phil Wang
74f222596a remove todo 2022-05-15 11:01:35 -07:00
Phil Wang
aa6772dcff make sure optimizer and scaler is reloaded on resume for training diffusion prior script, move argparse to click 2022-05-15 10:48:10 -07:00
Phil Wang
71d0c4edae cleanup to use diffusion prior trainer 2022-05-15 10:16:05 -07:00
Phil Wang
f7eee09d8b 0.2.30 2022-05-15 09:56:59 -07:00
Phil Wang
89de5af63e experiment tracker agnostic 2022-05-15 09:56:40 -07:00
Phil Wang
4ec6d0ba81 backwards pass is not recommended under the autocast context, per pytorch docs 2022-05-14 18:26:19 -07:00
Phil Wang
aee92dba4a simplify more 2022-05-14 17:16:46 -07:00
Phil Wang
b0cd5f24b6 take care of gradient accumulation automatically for researchers, by passing in a max_batch_size on the decoder or diffusion prior trainer forward 2022-05-14 17:04:09 -07:00
Phil Wang
b494ed81d4 take care of backwards within trainer classes for diffusion prior and decoder, readying to take care of gradient accumulation as well (plus, unsure if loss should be backwards within autocast block) 2022-05-14 15:49:24 -07:00
Phil Wang
ff3474f05c normalize conditioning tokens outside of cross attention blocks 2022-05-14 14:23:52 -07:00
Phil Wang
d5293f19f1 lineup with paper 2022-05-14 13:57:00 -07:00
Phil Wang
e697183849 be able to customize adam eps 2022-05-14 13:55:04 -07:00
Phil Wang
591d37e266 lower default initial learning rate to what Jonathan Ho had in his original repo 2022-05-14 13:22:43 -07:00
Phil Wang
d1f02e8f49 always use sandwich norm for attention layer 2022-05-14 12:13:41 -07:00
Phil Wang
9faab59b23 use post-attn-branch layernorm in attempt to stabilize cross attention conditioning in decoder 2022-05-14 11:58:09 -07:00
Phil Wang
5d27029e98 make sure lowres conditioning image is properly normalized to -1 to 1 for cascading ddpm 2022-05-14 01:23:54 -07:00
Phil Wang
3115fa17b3 fix everything around normalizing images to -1 to 1 for ddpm training automatically 2022-05-14 01:17:11 -07:00
Phil Wang
124d8577c8 move the inverse normalization function called before image embeddings are derived from clip to within the diffusion prior and decoder classes 2022-05-14 00:37:52 -07:00
Phil Wang
2db0c9794c comments 2022-05-12 14:25:20 -07:00
Phil Wang
2277b47ffd make sure learned variance can work for any number of unets in the decoder, defaults to first unet, as suggested was used in the paper 2022-05-12 14:18:15 -07:00
Phil Wang
28b58e568c cleanup in preparation of option for learned variance 2022-05-12 12:04:52 -07:00
Phil Wang
924455d97d align the ema model device back after sampling from the cascading ddpm in the decoder 2022-05-11 19:56:54 -07:00
Phil Wang
6021945fc8 default to l2 loss 2022-05-11 19:24:51 -07:00
Light-V
6f76652d11 fix typo in README.md (#85)
The default config for clip from openai should be ViT-B/32
2022-05-11 13:38:16 -07:00
Phil Wang
3dda2570ed fix amp issue for https://github.com/lucidrains/DALLE2-pytorch/issues/82 2022-05-11 08:21:39 -07:00
Phil Wang
2f3c02dba8 numerical accuracy for noise schedule parameters 2022-05-10 15:28:46 -07:00
Phil Wang
908088cfea wrap up cross embed layer feature 2022-05-10 12:19:34 -07:00
Phil Wang
8dc8a3de0d product management 2022-05-10 11:51:38 -07:00
Phil Wang
35f89556ba bring in the cross embed layer from Crossformer paper for initial convolution in unet 2022-05-10 11:50:38 -07:00
Phil Wang
2b55f753b9 fix new issue with github actions and auto pypi package uploading 2022-05-10 10:51:15 -07:00
Phil Wang
fc8fce38fb make sure cascading DDPM can be trained unconditionally, to ready for CLI one command training for the public 2022-05-10 10:48:10 -07:00
Phil Wang
a1bfb03ba4 project management 2022-05-10 10:13:51 -07:00
Phil Wang
b1e7b5f6bb make sure resnet groups in unet is finely customizable 2022-05-10 10:12:50 -07:00
z
10b905b445 smol typo (#81) 2022-05-10 09:52:50 -07:00
Phil Wang
9b322ea634 patch 2022-05-09 19:46:19 -07:00
Phil Wang
ba64ea45cc 0.2.3 2022-05-09 16:50:31 -07:00
Phil Wang
64f7be1926 some cleanup 2022-05-09 16:50:21 -07:00
Phil Wang
db805e73e1 fix a bug with numerical stability in attention, sorry! 🐛 2022-05-09 16:23:37 -07:00
z
cb07b37970 Ensure Eval Mode In Metric Functions (#79)
* add eval/train toggles

* train/eval flags

* shift train toggle

Co-authored-by: nousr <z@localhost.com>
2022-05-09 16:05:40 -07:00
Phil Wang
a774bfefe2 add attention and feedforward dropouts to train_diffusion_prior script 2022-05-09 13:57:15 -07:00
Phil Wang
2ae57f0cf5 cleanup 2022-05-09 13:51:26 -07:00
Phil Wang
e46eaec817 deal the diffusion prior problem yet another blow 2022-05-09 11:08:52 -07:00
Kumar R
8647cb5e76 Val loss changes, with quite a few other changes. This is in place of the earlier PR(https://github.com/lucidrains/DALLE2-pytorch/pull/67) (#77)
* Val_loss changes - no rebased with lucidrains' master.

* Val Loss changes - now rebased with lucidrains' master

* train_diffusion_prior.py updates

* dalle2_pytorch.py updates

* __init__.py changes

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2022-05-09 08:53:29 -07:00
Phil Wang
53c189e46a give more surface area for attention in diffusion prior 2022-05-09 08:08:11 -07:00
Phil Wang
dde51fd362 revert restriction for classifier free guidance for diffusion prior, given @crowsonkb advice 2022-05-07 20:55:41 -07:00
Nasir Khalid
2eac7996fa Additional image_embed metric (#75)
Added metric to track image_embed vs predicted_image_embed
2022-05-07 14:32:33 -07:00
Phil Wang
4010aec033 turn off classifier free guidance if predicting x_start for diffusion prior 2022-05-07 09:38:17 -07:00
Phil Wang
c87b84a259 todo 2022-05-07 09:21:08 -07:00
Phil Wang
8b05468653 todo 2022-05-07 08:33:45 -07:00
Phil Wang
830afd3c15 sinusoidal embed time embeddings for diffusion prior as well, for continuous version 2022-05-07 08:32:43 -07:00
Phil Wang
8f93729d19 when in doubt, make it a hyperparameter 2022-05-07 07:52:17 -07:00
z
cd5f2c1de4 simulate unrelated captions as a training metric (#66)
* add unrelated embedding metric

* change to torch.roll

Co-authored-by: nousr <z@localhost.com>
Co-authored-by: nousr <>
2022-05-07 05:34:59 -07:00
Phil Wang
85ed77d512 fix a potentially huge bug thanks to @CiaoHe https://github.com/lucidrains/DALLE2-pytorch/issues/71 2022-05-07 05:05:54 -07:00
Piero Rolando
fd53fa17db Fix a typo in README (#70)
Change "pyhon" for "python" (correct)
2022-05-06 16:53:36 -07:00
Phil Wang
3676ef4d49 make sure vqgan-vae trainer supports mixed precision 2022-05-06 10:44:16 -07:00
Phil Wang
28e944f328 make sure openai clip adapter outputs l2normed embeddings 2022-05-06 10:12:03 -07:00
Phil Wang
14e63a3f67 also offer l2norm clamping in diffusion prior during training, if one were using predict x0 objective 2022-05-06 10:05:14 -07:00
Phil Wang
09e9eaa5a6 project management 2022-05-06 09:00:22 -07:00
Phil Wang
e6d752cf4a reprioritize 2022-05-06 08:55:26 -07:00
Phil Wang
ad20a14a4d bring in rotary embeddings for diffusion prior causal transformer (the most powerful relative positional encoding, used in PaLM) - 0.1.0 because of breaking change 2022-05-06 08:45:30 -07:00
Phil Wang
0be1e0d64c support CoCa, which seems to be better than CLIP (has an autoregressive text encoder) https://arxiv.org/abs/2205.01917 2022-05-06 08:27:12 -07:00
Phil Wang
98df1ba51e add diffusion prior trainer, which automatically takes care of the exponential moving average (training and sampling), as well as mixed precision, gradient clipping 2022-05-06 08:11:09 -07:00
Phil Wang
878b555ef7 fix training with clip 2022-05-06 07:37:57 -07:00
Phil Wang
63029f7388 remove l2norm output from train_diffusion_prior.py 2022-05-05 19:07:58 -07:00
Phil Wang
c76a964fd6 allow for CLIP to be optional in Decoder, and allow DecoderTrainer to work off training pre-encoded image embeddings 2022-05-05 08:11:01 -07:00
Phil Wang
79fabc4341 reorg readme 2022-05-05 07:54:12 -07:00
Kumar R
f7ef4bde38 Added some documentation for the diffusion prior in README.md (#62)
* Delete README.md

* Create README.md

* Update README.md

* Update README.md
2022-05-05 07:51:31 -07:00
Phil Wang
93ba019069 product management 2022-05-05 07:39:51 -07:00
Phil Wang
8518684ae9 does not make much sense, as researchers may want to try predicting noise with diffusionprior instead of predicting x0 2022-05-05 07:37:00 -07:00
Phil Wang
1d5dc08810 take @crowsonkb 's suggestion at https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132 2022-05-05 07:28:53 -07:00
Phil Wang
d8d8b6caf1 dataloaders for decoder training, from @Veldrovive 2022-05-05 07:09:45 -07:00
Aidan Dempster
15acc03bd4 Add a dataloader for training the decoder (#57)
* Added dataloader and updated requirements

* Added option to set embedding shard width separately from webdataset shard length.
There must be a better way to do this.

* Changed embedding loader to read using fsspec

* Moved the loader into a more compatible location

* Removed unnecessary package

* Fixed typo (Embeding -> Embedding)

* Simplified example embedding finder code to remove unnecessary get_file_list function

* Added example usage of ImageEmbeddingDataset

* Changed the name of create_dataloader to be more verbose
Added a dataloaders __init__.py
2022-05-05 07:08:45 -07:00
Phil Wang
896f19786d remove convnext blocks, they are illsuited for generative work, validated by early experimental results at https://github.com/lucidrains/video-diffusion-pytorch 2022-05-05 07:07:21 -07:00
Phil Wang
aec5575d09 take a bet on resize right, given Katherine is using it 2022-05-04 19:26:45 -07:00
Phil Wang
9773f10d6c use inference mode whenever possible, cleanup 2022-05-04 15:25:05 -07:00
Phil Wang
a6bf8ddef6 advertise laion 2022-05-04 15:04:05 -07:00
Phil Wang
86e692d24f fix random crop probability 2022-05-04 11:52:24 -07:00
Phil Wang
97b751209f allow for last unet in the cascade to be trained on crops, if it is convolution-only 2022-05-04 11:48:48 -07:00
Phil Wang
74103fd8d6 product management 2022-05-04 11:20:50 -07:00
Phil Wang
1992d25cad project management 2022-05-04 11:18:54 -07:00
Phil Wang
5b619c2fd5 make sure some hyperparameters for unet block is configurable 2022-05-04 11:18:32 -07:00
Phil Wang
9359ad2e91 0.0.95 2022-05-04 10:53:05 -07:00
Phil Wang
9ff228188b offer old resnet blocks, from the original DDPM paper, just in case convnexts are unsuitable for generative work 2022-05-04 10:52:58 -07:00
Kumar R
2d9963d30e Reporting metrics - Cosine similarity. (#55)
* Update train_diffusion_prior.py

* Delete train_diffusion_prior.py

* Cosine similarity logging.

* Update train_diffusion_prior.py

* Report Cosine metrics every N steps.
2022-05-04 08:04:36 -07:00
Phil Wang
58d9b422f3 0.0.94 2022-05-04 07:42:33 -07:00
Ray Bell
44b319cb57 add missing import (#56) 2022-05-04 07:42:20 -07:00
Phil Wang
c30f380689 final reminder 2022-05-03 08:18:53 -07:00
Phil Wang
e4e884bb8b keep all doors open 2022-05-03 08:17:02 -07:00
Phil Wang
803ad9c17d product management again 2022-05-03 08:15:25 -07:00
Phil Wang
a88dd6a9c0 todo 2022-05-03 08:09:02 -07:00
Kumar R
72c16b496e Update train_diffusion_prior.py (#53) 2022-05-02 22:44:57 -07:00
z
81d83dd7f2 defaults align with paper (#52)
Co-authored-by: nousr <>
2022-05-02 13:52:11 -07:00
Phil Wang
fa66f7e1e9 todo 2022-05-02 12:57:15 -07:00
Phil Wang
aa8d135245 allow laion to experiment with normformer in diffusion prior 2022-05-02 11:35:00 -07:00
Phil Wang
70282de23b add ability to turn on normformer settings, given @borisdayma reported good results and some personal anecdata 2022-05-02 11:33:15 -07:00
Phil Wang
83f761847e todo 2022-05-02 10:52:39 -07:00
Phil Wang
11469dc0c6 makes more sense to keep this as True as default, for stability 2022-05-02 10:50:55 -07:00
Romain Beaumont
2d25c89f35 Fix passing of l2norm_output to DiffusionPriorNetwork (#51) 2022-05-02 10:48:16 -07:00
Phil Wang
3fe96c208a add ability to train diffusion prior with l2norm on output image embed 2022-05-02 09:53:20 -07:00
Phil Wang
0fc6c9cdf3 provide option to l2norm the output of the diffusion prior 2022-05-02 09:41:03 -07:00
Phil Wang
7ee0ecc388 mixed precision for training diffusion prior + save optimizer and scaler states 2022-05-02 09:31:04 -07:00
Phil Wang
1924c7cc3d fix issue with mixed precision and gradient clipping 2022-05-02 09:20:19 -07:00
Phil Wang
f7df3caaf3 address not calculating average eval / test loss when training diffusion prior https://github.com/lucidrains/DALLE2-pytorch/issues/49 2022-05-02 08:51:41 -07:00
Phil Wang
fc954ee788 fix calculation of adaptive weight for vit-vqgan, thanks to @CiaoHe 2022-05-02 07:58:14 -07:00
Phil Wang
c1db2753f5 todo 2022-05-01 18:02:30 -07:00
Phil Wang
ad87bfe28f switch to using linear attention for the sparse attention layers within unet, given success in GAN projects 2022-05-01 17:59:03 -07:00
Phil Wang
76c767b1ce update deps, commit to using webdatasets, per @rom1504 consultation 2022-05-01 12:22:15 -07:00
Phil Wang
d991b8c39c just clip the diffusion prior network parameters 2022-05-01 12:01:08 -07:00
Phil Wang
902693e271 todo 2022-05-01 11:57:08 -07:00
Phil Wang
35cd63982d add gradient clipping, make sure weight decay is configurable, make sure learning rate is actually passed into get_optimizer, make sure model is set to training mode at beginning of each epoch 2022-05-01 11:55:38 -07:00
Kumar R
53ce6dfdf6 All changes implemented, current run happening. Link to wandb run in comments. (#43)
* Train DiffusionPrior with pre-computed embeddings

This is in response to https://github.com/lucidrains/DALLE2-pytorch/issues/29 - more metrics will get added.
2022-05-01 11:46:59 -07:00
Phil Wang
ad8d7a368b product management 2022-05-01 11:26:21 -07:00
Phil Wang
b8cf1e5c20 more attention 2022-05-01 11:00:33 -07:00
Phil Wang
94aaa08d97 product management 2022-05-01 09:43:10 -07:00
Phil Wang
8b9bbec7d1 project management 2022-05-01 09:32:57 -07:00
Phil Wang
1bb9fc9829 add convnext backbone for vqgan-vae, still need to fix groupnorms in resnet encdec 2022-05-01 09:32:24 -07:00
Phil Wang
5e421bd5bb let researchers do the hyperparameter search 2022-05-01 08:46:21 -07:00
Phil Wang
67fcab1122 add MLP based time conditioning to all convnexts, in addition to cross attention. also add an initial convolution, given convnext first depthwise conv 2022-05-01 08:41:02 -07:00
Phil Wang
5bfbccda22 port over vqgan vae trainer 2022-05-01 08:09:15 -07:00
Phil Wang
989275ff59 product management 2022-04-30 16:57:56 -07:00
Phil Wang
56408f4a40 project management 2022-04-30 16:57:02 -07:00
Phil Wang
d1a697ac23 allows one to shortcut sampling at a specific unet number, if one were to be training in stages 2022-04-30 16:05:13 -07:00
Phil Wang
ebe01749ed DecoderTrainer sample method uses the exponentially moving averaged 2022-04-30 14:55:34 -07:00
Phil Wang
63195cc2cb allow for division of loss prior to scaling, for gradient accumulation purposes 2022-04-30 12:56:47 -07:00
Phil Wang
a2ef69af66 take care of mixed precision, and make gradient accumulation do-able externally 2022-04-30 12:27:24 -07:00
Phil Wang
5fff22834e be able to finely customize learning parameters for each unet, take care of gradient clipping 2022-04-30 11:56:05 -07:00
Phil Wang
a9421f49ec simplify Decoder training for the public 2022-04-30 11:45:18 -07:00
Phil Wang
77fa34eae9 fix all clipping / clamping issues 2022-04-30 10:08:24 -07:00
Phil Wang
1c1e508369 fix all issues with text encodings conditioning in the decoder, using null padding tokens technique from dalle v1 2022-04-30 09:13:34 -07:00
Phil Wang
f19c99ecb0 fix decoder needing separate conditional dropping probabilities for image embeddings and text encodings, thanks to @xiankgx ! 2022-04-30 08:48:05 -07:00
Phil Wang
721a444686 Merge pull request #37 from ProGamerGov/patch-1
Fix spelling and grammatical errors
2022-04-30 08:19:07 -07:00
ProGamerGov
63450b466d Fix spelling and grammatical errors 2022-04-30 09:18:13 -06:00
Phil Wang
20e7eb5a9b cleanup 2022-04-30 07:22:57 -07:00
Phil Wang
e2f9615afa use @clip-anytorch , thanks to @rom1504 2022-04-30 06:40:54 -07:00
Phil Wang
0d1c07c803 fix a bug with classifier free guidance, thanks to @xiankgx again! 2022-04-30 06:34:57 -07:00
Phil Wang
a389f81138 todo 2022-04-29 15:40:51 -07:00
Phil Wang
0283556608 fix example in readme, since api changed 2022-04-29 13:40:55 -07:00
Phil Wang
5063d192b6 now completely OpenAI CLIP compatible for training
just take care of the logic for AdamW and transformers

used namedtuples for clip adapter embedding outputs
2022-04-29 13:05:01 -07:00
Phil Wang
f4a54e475e add some training fns 2022-04-29 09:44:55 -07:00
Phil Wang
fb662a62f3 fix another bug thanks to @xiankgx 2022-04-29 07:38:32 -07:00
Phil Wang
587c8c9b44 optimize for clarity 2022-04-28 21:59:13 -07:00
Phil Wang
aa900213e7 force first unet in the cascade to be conditioned on image embeds 2022-04-28 20:53:15 -07:00
Phil Wang
cb26187450 vqgan-vae codebook dims should be 256 or smaller 2022-04-28 08:59:03 -07:00
Phil Wang
625ce23f6b 🐛 2022-04-28 07:21:18 -07:00
Phil Wang
dbf4a281f1 make sure another CLIP can actually be passed in, as long as it is wrapped in an adapter extended from BaseClipAdapter 2022-04-27 20:45:27 -07:00
Phil Wang
4ab527e779 some extra asserts for text encoding of diffusion prior and decoder 2022-04-27 20:11:43 -07:00
Phil Wang
d0cdeb3247 add ability for DALL-E2 to return PIL images with return_pil_images = True on forward, for those who have no clue about deep learning 2022-04-27 19:58:06 -07:00
Phil Wang
8c610aad9a only pass text encodings conditioning in diffusion prior if specified on initialization 2022-04-27 19:48:16 -07:00
Phil Wang
6700381a37 prepare for ability to integrate other clips other than x-clip 2022-04-27 19:35:05 -07:00
Phil Wang
20377f889a todo 2022-04-27 17:22:14 -07:00
Phil Wang
6edb1c5dd0 fix issue with ema class 2022-04-27 16:40:02 -07:00
Phil Wang
b093f92182 inform what is possible 2022-04-27 08:25:16 -07:00
Phil Wang
fa3bb6ba5c make sure cpu-only still works 2022-04-27 08:02:10 -07:00
Phil Wang
2705e7c9b0 attention-based upsampling claims unsupported by local experiments, removing 2022-04-27 07:51:04 -07:00
Phil Wang
77141882c8 complete vit-vqgan from https://arxiv.org/abs/2110.04627 2022-04-26 17:20:47 -07:00
Phil Wang
4075d02139 nevermind, it could be working, but only when i stabilize it with the feedforward layer + tanh as proposed in vit-vqgan paper (which will be built into the repository later for the latent diffusion) 2022-04-26 12:43:31 -07:00
Phil Wang
de0296106b be able to turn off warning for use of LazyLinear by passing in text embedding dimension for unet 2022-04-26 11:42:46 -07:00
Phil Wang
eafb136214 suppress a warning 2022-04-26 11:40:45 -07:00
Phil Wang
bfbcc283a3 DRY a tiny bit for gaussian diffusion related logic 2022-04-26 11:39:12 -07:00
Phil Wang
c30544b73a no CLIP altogether for training DiffusionPrior 2022-04-26 10:23:41 -07:00
Phil Wang
bdf5e9c009 todo 2022-04-26 09:56:54 -07:00
Phil Wang
9878be760b have researcher explicitly state upfront whether to condition with text encodings in cascading ddpm decoder, have DALLE-2 class take care of passing in text if feature turned on 2022-04-26 09:47:09 -07:00
Phil Wang
7ba6357c05 allow for training the Prior network with precomputed CLIP embeddings (or text encodings) 2022-04-26 09:29:51 -07:00
Phil Wang
76e063e8b7 refactor so that the causal transformer in the diffusion prior network can be conditioned without text encodings (for Laions parallel efforts, although it seems from the paper it is needed) 2022-04-26 09:00:11 -07:00
Phil Wang
4d25976f33 make sure non-latent diffusion still works 2022-04-26 08:36:00 -07:00
Phil Wang
0b28ee0d01 revert back to old upsampling, paper does not work 2022-04-26 07:39:04 -07:00
Phil Wang
45262a4bb7 bring in the exponential moving average wrapper, to get ready for training 2022-04-25 19:24:13 -07:00
Phil Wang
13a58a78c4 scratch off todo 2022-04-25 19:01:30 -07:00
Phil Wang
f75d49c781 start a file for all attention-related modules, use attention-based upsampling in the unets in dalle-2 2022-04-25 18:59:10 -07:00
Phil Wang
3b520dfa85 bring in attention-based upsampling to strengthen vqgan-vae, seems to work as advertised in initial experiments in GAN 2022-04-25 17:27:45 -07:00
Phil Wang
79198c6ae4 keep readme simple for reader 2022-04-25 17:21:45 -07:00
Phil Wang
77a246b1b9 todo 2022-04-25 08:48:28 -07:00
Phil Wang
f93a3f6ed8 reprioritize 2022-04-25 08:44:27 -07:00
Phil Wang
8f2a0c7e00 better naming 2022-04-25 07:44:33 -07:00
Phil Wang
863f4ef243 just take care of the logic for setting all latent diffusion to predict x0, if needed 2022-04-24 10:06:42 -07:00
Phil Wang
fb8a66a2de just in case latent diffusion performs better with prediction of x0 instead of epsilon, open up the research avenue 2022-04-24 10:04:22 -07:00
Phil Wang
579d4b42dd does not seem right to clip for the prior diffusion part 2022-04-24 09:51:18 -07:00
Phil Wang
473808850a some outlines to the eventual CLI endpoint 2022-04-24 09:27:15 -07:00
Phil Wang
d5318aef4f todo 2022-04-23 08:23:08 -07:00
Phil Wang
f82917e1fd prepare for turning off gradient penalty, as shown in GAN literature, GP needs to be only applied 1 out of 4 iterations 2022-04-23 07:52:10 -07:00
Phil Wang
05b74be69a use null container pattern to cleanup some conditionals, save more cleanup for next week 2022-04-22 15:23:18 -07:00
Phil Wang
a8b5d5d753 last tweak of readme 2022-04-22 14:16:43 -07:00
Phil Wang
976ef7f87c project management 2022-04-22 14:15:42 -07:00
Phil Wang
fd175bcc0e readme 2022-04-22 14:13:33 -07:00
Phil Wang
76b32f18b3 first pass at complete DALL-E2 + Latent Diffusion integration, latent diffusion on any layer(s) of the cascading ddpm in the decoder. 2022-04-22 13:53:13 -07:00
Phil Wang
f2d5b87677 todo 2022-04-22 11:39:58 -07:00
Phil Wang
461347c171 fix vqgan-vae for latent diffusion 2022-04-22 11:38:57 -07:00
Phil Wang
46cef31c86 optional projection out for prior network causal transformer 2022-04-22 11:16:30 -07:00
Phil Wang
59b1a77d4d be a bit more conservative and stick with layernorm (without bias) for now, given @borisdayma results https://twitter.com/borisdayma/status/1517227191477571585 2022-04-22 11:14:54 -07:00
Phil Wang
7f338319fd makes more sense for blur augmentation to happen before the upsampling 2022-04-22 11:10:47 -07:00
Phil Wang
2c6c91829d refactor blurring training augmentation to be taken care of by the decoder, with option to downsample to previous resolution before upsampling (cascading ddpm). this opens up the possibility of cascading latent ddpm 2022-04-22 11:09:17 -07:00
Phil Wang
ad17c69ab6 prepare for latent diffusion in the first DDPM of the cascade in the Decoder 2022-04-21 17:54:31 -07:00
Phil Wang
0b4ec34efb todo 2022-04-20 12:24:23 -07:00
Phil Wang
f027b82e38 remove wip as main networks (prior and decoder) are completed 2022-04-20 12:12:16 -07:00
Phil Wang
8cc9016cb0 Merge pull request #17 from kashif/patch-2
added diffusion-gan thoughts
2022-04-20 12:10:26 -07:00
Kashif Rasul
1d8f37befe added diffusion-gan thoughts
https://github.com/NVlabs/denoising-diffusion-gan
2022-04-20 21:01:11 +02:00
Phil Wang
faebf4c8b8 from my vision transformer experience, dimension of attention head of 32 is sufficient for image feature maps 2022-04-20 11:40:32 -07:00
Phil Wang
b8e8d3c164 thoughts 2022-04-20 11:34:51 -07:00
Phil Wang
8e2416b49b commit to generalizing latent diffusion to one model 2022-04-20 11:27:42 -07:00
Phil Wang
f37c26e856 cleanup and DRY a little 2022-04-20 10:56:32 -07:00
Phil Wang
27a33e1b20 complete contextmanager method for keeping only one unet in GPU during training or inference 2022-04-20 10:46:13 -07:00
Phil Wang
6f941a219a give time tokens a surface area of 2 tokens as default, make it so researcher can customize which unet actually is conditioned on image embeddings and/or text encodings 2022-04-20 10:04:47 -07:00
Phil Wang
ddde8ca1bf fix cosine bbeta schedule, thanks to @Zhengxinyang 2022-04-19 20:54:28 -07:00
Phil Wang
c26b77ad20 todo 2022-04-19 13:07:32 -07:00
Phil Wang
c5b4aab8e5 intent 2022-04-19 11:00:05 -07:00
Phil Wang
a35c309b5f add sparse attention layers in between convnext blocks in unet (grid like attention, used in mobilevit, maxvit [bytedance ai], as well as a growing number of attention-based GANs) 2022-04-19 09:49:03 -07:00
Phil Wang
55bdcb98b9 scaffold for latent diffusion 2022-04-19 09:26:58 -07:00
24 changed files with 5499 additions and 460 deletions

9
.gitignore vendored
View File

@@ -1,3 +1,12 @@
# default experiment tracker data
.tracker-data/
# Configuration Files
configs/*
!configs/*.example
!configs/*_defaults.py
!configs/README.md
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

795
README.md
View File

@@ -1,6 +1,6 @@
<img src="./dalle2.png" width="450px"></img>
## DALL-E 2 - Pytorch (wip)
## DALL-E 2 - Pytorch
Implementation of <a href="https://openai.com/dall-e-2/">DALL-E 2</a>, OpenAI's updated text-to-image synthesis neural network, in Pytorch.
@@ -10,11 +10,19 @@ The main novelty seems to be an extra layer of indirection with the prior networ
This model is SOTA for text-to-image for now.
It may also explore an extension of using <a href="https://huggingface.co/spaces/multimodalart/latentdiffusion">latent diffusion</a> in the decoder from Rombach et al.
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication with the <a href="https://laion.ai/">LAION</a> community | <a href="https://www.youtube.com/watch?v=AIOE1l1W0Tw">Yannic Interview</a>
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>
## Status
- A research group has used the code in this repository to train a functional diffusion prior for their CLIP generations. Will share their work once they release their preprint. This, and <a href="https://github.com/crowsonkb">Katherine's</a> own experiments, validate OpenAI's finding that the extra prior increases variety of generations.
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers. 2 researchers have also confirmed Decoder is working for them.
<img src="./samples/oxford.png" width="600px" />
*ongoing at 21k steps*
## Install
@@ -49,7 +57,7 @@ clip = CLIP(
use_all_token_embeds = True, # whether to use fine-grained contrastive learning (FILIP)
decoupled_contrastive_learning = True, # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
extra_latent_projection = True, # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
use_visual_ssl = True, # whether to do self supervised learning on iages
use_visual_ssl = True, # whether to do self supervised learning on images
visual_ssl_type = 'simclr', # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
use_mlm = False, # use masked language learning (MLM) on text (DeCLIP)
text_ssl_loss_weight = 0.05, # weight for text MLM loss
@@ -112,7 +120,8 @@ decoder = Decoder(
unet = unet,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
@@ -231,7 +240,8 @@ decoder = Decoder(
unet = (unet1, unet2), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256, 512), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
timesteps = 1000,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
@@ -248,13 +258,6 @@ loss = decoder(images, unet_number = 2)
loss.backward()
# do the above for many steps for both unets
# then it will learn to generate images based on the CLIP image embeddings
# chaining the unets from lowest resolution to highest resolution (thus cascading)
mock_image_embed = torch.randn(1, 512).cuda()
images = decoder.sample(mock_image_embed) # (1, 3, 512, 512)
```
Finally, to generate the DALL-E2 images from text. Insert the trained `DiffusionPrior` as well as the `Decoder` (which wraps `CLIP`, the causal transformer, and unet(s))
@@ -357,7 +360,9 @@ decoder = Decoder(
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
).cuda()
for unet_number in (1, 2):
@@ -385,7 +390,637 @@ You can also train the decoder on images of greater than the size (say 512x512)
For the layperson, no worries, training will all be automated into a CLI tool, at least for small scale training.
## CLI Usage (work in progress)
## Training on Preprocessed CLIP Embeddings
It is likely, when scaling up, that you would first preprocess your images and text into corresponding embeddings before training the prior network. You can do so easily by simply passing in `image_embed`, `text_embed`, and optionally `text_encodings` and `text_mask`
Working example below
```python
import torch
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior, CLIP
# get trained CLIP from step one
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8,
).cuda()
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2,
condition_on_text_encodings = False # this probably should be true, but just to get Laion started
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = diffusion_prior.clip.embed_image(images).image_embed
clip_text_embeds = diffusion_prior.clip.embed_text(text).text_embed
# feed text and images into diffusion prior network
loss = diffusion_prior(
text_embed = clip_text_embeds,
image_embed = clip_image_embeds
)
loss.backward()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
```
You can also completely go `CLIP`-less, in which case you will need to pass in the `image_embed_dim` into the `DiffusionPrior` on initialization
```python
import torch
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior(
net = prior_network,
image_embed_dim = 512, # this needs to be set
timesteps = 100,
cond_drop_prob = 0.2,
condition_on_text_encodings = False # this probably should be true, but just to get Laion started
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = torch.randn(4, 512).cuda()
clip_text_embeds = torch.randn(4, 512).cuda()
# feed text and images into diffusion prior network
loss = diffusion_prior(
text_embed = clip_text_embeds,
image_embed = clip_image_embeds
)
loss.backward()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
```
## OpenAI CLIP
Although there is the possibility they are using an unreleased, more powerful CLIP, you can use one of the released ones, if you do not wish to train your own CLIP from scratch. This will also allow the community to more quickly validate the conclusions of the paper.
To use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it into the `DiffusionPrior` or `Decoder` like so
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
# openai pretrained clip - defaults to ViT-B/32
clip = OpenAIClipAdapter()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
loss = diffusion_prior(text, images)
loss.backward()
# do above for many steps ...
# decoder (with unet)
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16)
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
dalle2 = DALLE2(
prior = diffusion_prior,
decoder = decoder
)
images = dalle2(
['a butterfly trying to escape a tornado'],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
# save your image (in this example, of size 256x256)
```
Now you'll just have to worry about training the Prior and the Decoder!
## Experimental
### DALL-E2 with Latent Diffusion
This repository decides to take the next step and offer DALL-E v2 combined with <a href="https://huggingface.co/spaces/multimodalart/latentdiffusion">latent diffusion</a>, from Rombach et al.
You can use it as follows. Latent diffusion can be limited to just the first U-Net in the cascade, or to any number you wish.
The repository also comes equipped with all the necessary settings to recreate `ViT-VQGan` from the <a href="https://arxiv.org/abs/2110.04627">Improved VQGans</a> paper. Furthermore, the <a href="https://github.com/lucidrains/vector-quantize-pytorch">vector quantization</a> library also comes equipped to do <a href="https://arxiv.org/abs/2203.01941">residual or multi-headed quantization</a>, which I believe will give an even further boost in performance to the autoencoder.
```python
import torch
from dalle2_pytorch import Unet, Decoder, CLIP, VQGanVAE
# trained clip from step 1
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 1,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 1,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
)
# 3 unets for the decoder (a la cascading DDPM)
# first two unets are doing latent diffusion
# vqgan-vae must be trained beforehand
vae1 = VQGanVAE(
dim = 32,
image_size = 256,
layers = 3,
layer_mults = (1, 2, 4)
)
vae2 = VQGanVAE(
dim = 32,
image_size = 512,
layers = 3,
layer_mults = (1, 2, 4)
)
unet1 = Unet(
dim = 32,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
sparse_attn = True,
sparse_attn_window = 2,
dim_mults = (1, 2, 4, 8)
)
unet2 = Unet(
dim = 32,
image_embed_dim = 512,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_image_embeds = True,
cond_on_text_encodings = False
)
unet3 = Unet(
dim = 32,
image_embed_dim = 512,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_image_embeds = True,
cond_on_text_encodings = False,
attend_at_middle = False
)
# decoder, which contains the unet(s) and clip
decoder = Decoder(
clip = clip,
vae = (vae1, vae2), # latent diffusion for unet1 (vae1) and unet2 (vae2), but not for the last unet3
unet = (unet1, unet2, unet3), # insert unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256, 512, 1024), # resolutions, 256 for first unet, 512 for second, 1024 for third
timesteps = 100,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
images = torch.randn(1, 3, 1024, 1024).cuda()
# feed images into decoder, specifying which unet you want to train
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
with decoder.one_unet_in_gpu(1):
loss = decoder(images, unet_number = 1)
loss.backward()
with decoder.one_unet_in_gpu(2):
loss = decoder(images, unet_number = 2)
loss.backward()
with decoder.one_unet_in_gpu(3):
loss = decoder(images, unet_number = 3)
loss.backward()
# do the above for many steps for both unets
# then it will learn to generate images based on the CLIP image embeddings
# chaining the unets from lowest resolution to highest resolution (thus cascading)
mock_image_embed = torch.randn(1, 512).cuda()
images = decoder.sample(mock_image_embed) # (1, 3, 1024, 1024)
```
## Training wrapper
### Decoder Training
Training the `Decoder` may be confusing, as one needs to keep track of an optimizer for each of the `Unet`(s) separately. Each `Unet` will also need its own corresponding exponential moving average. The `DecoderTrainer` hopes to make this simple, as shown below
```python
import torch
from dalle2_pytorch import DALLE2, Unet, Decoder, CLIP, DecoderTrainer
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# mock data
text = torch.randint(0, 49408, (32, 256)).cuda()
images = torch.randn(32, 3, 256, 256).cuda()
# decoder (with unet)
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_text_encodings = True
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 1000,
condition_on_text_encodings = True
).cuda()
decoder_trainer = DecoderTrainer(
decoder,
lr = 3e-4,
wd = 1e-2,
ema_beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
)
for unet_number in (1, 2):
loss = decoder_trainer(
images,
text = text,
unet_number = unet_number, # which unet to train on
max_batch_size = 4 # gradient accumulation - this sets the maximum batch size in which to do forward and backwards pass - for this example 32 / 4 == 8 times
)
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
# after much training
# you can sample from the exponentially moving averaged unets as so
mock_image_embed = torch.randn(4, 512).cuda()
images = decoder_trainer.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
```
### Diffusion Prior Training
Similarly, one can use the `DiffusionPriorTrainer` to automatically instantiate and keep track of an exponential moving averaged prior.
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, DiffusionPriorTrainer, Unet, Decoder, CLIP
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# mock data
text = torch.randint(0, 49408, (512, 256)).cuda()
images = torch.randn(512, 3, 256, 256).cuda()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
diffusion_prior_trainer = DiffusionPriorTrainer(
diffusion_prior,
lr = 3e-4,
wd = 1e-2,
ema_beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
)
loss = diffusion_prior_trainer(text, images, max_batch_size = 4)
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
# after much of the above three lines in a loop
# you can sample from the exponential moving average of the diffusion prior identically to how you do so for DiffusionPrior
image_embeds = diffusion_prior_trainer.sample(text, max_batch_size = 4) # (512, 512) - exponential moving averaged image embeddings
```
## Bonus
### Unconditional Training
The repository also contains the means to train unconditional DDPM model, or even cascading DDPMs. You simply have to set `unconditional = True` in the `Decoder`
ex.
```python
import torch
from dalle2_pytorch import Unet, Decoder, DecoderTrainer
# unet for the cascading ddpm
unet1 = Unet(
dim = 128,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 32,
dim_mults = (1, 2, 4, 8, 16)
).cuda()
# decoder, which contains the unets
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (256, 512), # first unet up to 256px, then second to 512px
timesteps = 1000,
unconditional = True
).cuda()
# decoder trainer
decoder_trainer = DecoderTrainer(decoder)
# images (get a lot of this)
images = torch.randn(1, 3, 512, 512).cuda()
# feed images into decoder
for i in (1, 2):
loss = decoder_trainer(images, unet_number = i)
decoder_trainer.update(unet_number = i)
# do the above for many many many many images
# then it will learn to generate images
images = decoder_trainer.sample(batch_size = 36, max_batch_size = 4) # (36, 3, 512, 512)
```
## Dataloaders
### Decoder Dataloaders
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
#### Decoder: Image Embedding Dataset
When training the decoder (and up samplers if training together) in isolation, you will need to load images and corresponding image embeddings. This dataset can read two similar types of datasets. First, it can read a [webdataset](https://github.com/webdataset/webdataset) that contains `.jpg` and `.npy` files in the `.tar`s that contain the images and associated image embeddings respectively. Alternatively, you can also specify a source for the embeddings outside of the webdataset. In this case, the path to the embeddings should contain `.npy` files with the same shard numbers as the webdataset and there should be a correspondence between the filename of the `.jpg` and the index of the embedding in the `.npy`. So, for example, `0001.tar` from the webdataset with image `00010509.jpg` (the first 4 digits are the shard number and the last 4 are the index) in it should be paralleled by a `img_emb_0001.npy` which contains a NumPy array with the embedding at index 509.
Generating a dataset of this type:
1. Use [img2dataset](https://github.com/rom1504/img2dataset) to generate a webdataset.
2. Use [clip-retrieval](https://github.com/rom1504/clip-retrieval) to convert the images to embeddings.
3. Use [embedding-dataset-reordering](https://github.com/Veldrovive/embedding-dataset-reordering) to reorder the embeddings into the expected format.
Usage:
```python
from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embedding_dataloader
# Create a dataloader directly.
dataloader = create_image_embedding_dataloader(
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
num_workers=4,
batch_size=32,
shard_width=4, # If a file in the webdataset shard 3 is named 0003039.jpg, we know the shard width is 4 and the last three digits are the index
shuffle_num=200, # Does a shuffle of the data with a buffer size of 200
shuffle_shards=True, # Shuffle the order the shards are read in
resample_shards=False, # Sample shards with replacement. If true, an epoch will be infinite unless stopped manually
)
for img, emb in dataloader:
print(img.shape) # torch.Size([32, 3, 256, 256])
print(emb.shape) # torch.Size([32, 512])
# Train decoder only as shown above
# Or create a dataset without a loader so you can configure it manually
dataset = ImageEmbeddingDataset(
urls="/path/or/url/to/webdataset/{0000..9999}.tar",
embedding_folder_url="path/or/url/to/embeddings/folder",
shard_width=4,
shuffle_shards=True,
resample=False
)
```
### Scripts (wip)
#### `train_diffusion_prior.py`
This script allows training the DiffusionPrior on pre-computed text and image embeddings. The working example below elucidates this process.
Please note that the script internally passes text_embed and image_embed to the DiffusionPrior, unlike the example below.
#### Usage
```bash
$ python train_diffusion_prior.py
```
The most significant parameters for the script are as follows:
- `image-embed-url`, default = `"https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/"`
- `text-embed-url`, default = `"https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/"`
- `image-embed-dim`, default = `768` - 768 corresponds to the ViT iL/14 embedding size,change it to what your chosen ViT generates
- `learning-rate`, default = `1.1e-4`
- `weight-decay`, default = `6.02e-2`
- `max-grad-norm`, default = `0.5`
- `batch-size`, default = `10 ** 4`
- `num-epochs`, default = `5`
- `clip`, default = `None` # Signals the prior to use pre-computed embeddings
#### Loading and Saving the DiffusionPrior model
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
```python
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model
```
##### Loading
load_diffusion_model(dprior_path, device)
dprior_path : path to saved model(.pth)
device : the cuda device you're running on
##### Saving
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
save_path : path to save at
model : object of Diffusion_Prior
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
scaler : a GradScaler object.
e.g: scaler = GradScaler(enabled=amp)
config : config object created in train_diffusion_prior.py - see file for example.
image_embed_dim - the dimension of the image_embedding
e.g: 768
## CLI (wip)
```bash
$ dream 'sharing a sunset at the summit of mount everest with my dog'
@@ -393,14 +1028,24 @@ $ dream 'sharing a sunset at the summit of mount everest with my dog'
Once built, images will be saved to the same directory the command is invoked
## Training wrapper (wip)
Offer training wrappers
<a href="https://github.com/lucidrains/big-sleep">template</a>
## Training CLI (wip)
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
## Appreciation
This library would not have gotten to this working state without the help of
- <a href="https://github.com/nousr">Zion</a> and <a href="https://github.com/krish240574">Kumar</a> for the diffusion training script
- <a href="https://github.com/Veldrovive">Aidan</a> for the decoder training script and dataloaders
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
... and many others. Thank you! 🙏
## Todo
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
@@ -409,10 +1054,45 @@ Offer training wrappers
- [x] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, add efficient attention (conditional on resolution), port all learnings over to https://github.com/lucidrains/x-unet
- [x] add efficient attention in unet
- [x] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
- [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [x] build out latent diffusion architecture, with the vq-reg variant (vqgan-vae), make it completely optional and compatible with cascading ddpms
- [x] for decoder, allow ability to customize objective (predict epsilon vs x0), in case latent diffusion does better with prediction of x0
- [x] use attention-based upsampling https://arxiv.org/abs/2112.11435
- [x] use inheritance just this once for sharing logic between decoder and prior network ddpms
- [x] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
- [x] abstract interface for CLIP adapter class, so other CLIPs can be brought in
- [x] take care of mixed precision as well as gradient accumulation within decoder trainer
- [x] just take care of the training for the decoder in a wrapper class, as each unet in the cascade will need its own optimizer
- [x] bring in tools to train vqgan-vae
- [x] add convnext backbone for vqgan-vae (in addition to vit [vit-vqgan] + resnet)
- [x] make sure DDPMs can be run with traditional resnet blocks (but leave convnext as an option for experimentation)
- [x] make sure for the latter unets in the cascade, one can train on crops for learning super resolution (constrain the unet to be only convolutions in that case, or allow conv-like attention with rel pos bias)
- [x] offer setting in diffusion prior to split time and image embeddings into multiple tokens, configurable, for more surface area during attention
- [x] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
- [x] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
- [x] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
- [x] cross embed layers for downsampling, as an option
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [x] use pydantic for config drive training
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations
@@ -443,22 +1123,71 @@ Offer training wrappers
```
```bibtex
@inproceedings{Liu2022ACF,
title = {A ConvNet for the 2020s},
author = {Zhuang Liu and Hanzi Mao and Chaozheng Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
@article{shen2019efficient,
author = {Zhuoran Shen and Mingyuan Zhang and Haiyu Zhao and Shuai Yi and Hongsheng Li},
title = {Efficient Attention: Attention with Linear Complexities},
journal = {CoRR},
year = {2018},
url = {http://arxiv.org/abs/1812.01243},
}
```
```bibtex
@inproceedings{Tu2022MaxViTMV,
title = {MaxViT: Multi-Axis Vision Transformer},
author = {Zhe-Wei Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022}
}
```
```bibtex
@misc{zhang2019root,
title = {Root Mean Square Layer Normalization},
author = {Biao Zhang and Rico Sennrich},
year = {2019},
eprint = {1910.07467},
archivePrefix = {arXiv},
primaryClass = {cs.LG}
@article{Yu2021VectorquantizedIM,
title = {Vector-quantized Image Modeling with Improved VQGAN},
author = {Jiahui Yu and Xin Li and Jing Yu Koh and Han Zhang and Ruoming Pang and James Qin and Alexander Ku and Yuanzhong Xu and Jason Baldridge and Yonghui Wu},
journal = {ArXiv},
year = {2021},
volume = {abs/2110.04627}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>
```bibtex
@article{Shleifer2021NormFormerIT,
title = {NormFormer: Improved Transformer Pretraining with Extra Normalization},
author = {Sam Shleifer and Jason Weston and Myle Ott},
journal = {ArXiv},
year = {2021},
volume = {abs/2110.09456}
}
```
```bibtex
@article{Yu2022CoCaCC,
title = {CoCa: Contrastive Captioners are Image-Text Foundation Models},
author = {Jiahui Yu and Zirui Wang and Vijay Vasudevan and Legg Yeung and Mojtaba Seyedhosseini and Yonghui Wu},
journal = {ArXiv},
year = {2022},
volume = {abs/2205.01917}
}
```
```bibtex
@misc{wang2021crossformer,
title = {CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention},
author = {Wenxiao Wang and Lu Yao and Long Chen and Binbin Lin and Deng Cai and Xiaofei He and Wei Liu},
year = {2021},
eprint = {2108.00154},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@article{ho2021cascaded,
title = {Cascaded Diffusion Models for High Fidelity Image Generation},
author = {Ho, Jonathan and Saharia, Chitwan and Chan, William and Fleet, David J and Norouzi, Mohammad and Salimans, Tim},
journal = {arXiv preprint arXiv:2106.15282},
year = {2021}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

109
configs/README.md Normal file
View File

@@ -0,0 +1,109 @@
## DALLE2 Training Configurations
For more complex configuration, we provide the option of using a configuration file instead of command line arguments.
### Decoder Trainer
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.example.json).
**<ins>Unets</ins>:**
Each member of this array defines a single unet that will be added to the decoder.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `dim` | Yes | N/A | The starting channels of the unet. |
| `image_embed_dim` | Yes | N/A | The dimension of the image embeddings. |
| `dim_mults` | No | `(1, 2, 4, 8)` | The growth factors of the channels. |
Any parameter from the `Unet` constructor can also be given here.
**<ins>Decoder</ins>:**
Defines the configuration options for the decoder model. The unets defined above will automatically be inserted.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `image_sizes` | Yes | N/A | The resolution of the image after each upsampling step. The length of this array should be the number of unets defined. |
| `image_size` | Yes | N/A | Not used. Can be any number. |
| `timesteps` | No | `1000` | The number of diffusion timesteps used for generation. |
| `loss_type` | No | `l2` | The loss function. Options are `l1`, `huber`, or `l2`. |
| `beta_schedule` | No | `cosine` | The noising schedule. Options are `cosine`, `linear`, `quadratic`, `jsd`, or `sigmoid`. |
| `learned_variance` | No | `True` | Whether to learn the variance. |
Any parameter from the `Decoder` constructor can also be given here.
**<ins>Data</ins>:**
Settings for creation of the dataloaders.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `webdataset_base_url` | Yes | N/A | The url of a shard in the webdataset with the shard replaced with `{}`[^1]. |
| `embeddings_url` | No | N/A | The url of the folder containing embeddings shards. Not required if embeddings are in webdataset. |
| `num_workers` | No | `4` | The number of workers used in the dataloader. |
| `batch_size` | No | `64` | The batch size. |
| `start_shard` | No | `0` | Defines the start of the shard range the dataset will recall. |
| `end_shard` | No | `9999999` | Defines the end of the shard range the dataset will recall. |
| `shard_width` | No | `6` | Defines the width of one webdataset shard number[^2]. |
| `index_width` | No | `4` | Defines the width of the index of a file inside a shard[^3]. |
| `splits` | No | `{ "train": 0.75, "val": 0.15, "test": 0.1 }` | Defines the proportion of shards that will be allocated to the training, validation, and testing datasets. |
| `shuffle_train` | No | `True` | Whether to shuffle the shards of the training dataset. |
| `resample_train` | No | `False` | If true, shards will be randomly sampled with replacement from the datasets making the epoch length infinite if a limit is not set. Cannot be enabled if `shuffle_train` is enabled. |
| `preprocessing` | No | `{ "ToTensor": True }` | Defines preprocessing applied to images from the datasets. |
[^1]: If your shard files have the paths `protocol://path/to/shard/00104.tar`, then the base url would be `protocol://path/to/shard/{}.tar`. If you are using a protocol like `s3`, you need to pipe the tars. For example `pipe:s3cmd get s3://bucket/path/{}.tar -`.
[^2]: This refers to the string length of the shard number for your webdataset shards. For instance, if your webdataset shard has the filename `00104.tar`, your shard length is 5.
[^3]: Inside the webdataset `tar`, you have files named something like `001045945.jpg`. 5 of these characters refer to the shard, and 4 refer to the index of the file in the webdataset (shard is `001041` and index is `5945`). The `index_width` in this case is 4.
**<ins>Train</ins>:**
Settings for controlling the training hyperparameters.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `epochs` | No | `20` | The number of epochs in the training run. |
| `lr` | No | `1e-4` | The learning rate. |
| `wd` | No | `0.01` | The weight decay. |
| `max_grad_norm`| No | `0.5` | The grad norm clipping. |
| `save_every_n_samples` | No | `100000` | Samples will be generated and a checkpoint will be saved every `save_every_n_samples` samples. |
| `device` | No | `cuda:0` | The device to train on. |
| `epoch_samples` | No | `None` | Limits the number of samples iterated through in each epoch. This must be set if resampling. None means no limit. |
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
| `ema_beta` | No | `0.99` | The ema coefficient. |
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
**<ins>Evaluate</ins>:**
Defines which evaluation metrics will be used to test the model.
Each metric can be enabled by setting its configuration. The configuration keys for each metric are defined by the torchmetrics constructors which will be linked.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `n_evalation_samples` | No | `1000` | The number of samples to generate to test the model. |
| `FID` | No | `None` | Setting to an object enables the [Frechet Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html) metric.
| `IS` | No | `None` | Setting to an object enables the [Inception Score](https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html) metric.
| `KID` | No | `None` | Setting to an object enables the [Kernel Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html) metric. |
| `LPIPS` | No | `None` | Setting to an object enables the [Learned Perceptual Image Patch Similarity](https://torchmetrics.readthedocs.io/en/stable/image/learned_perceptual_image_patch_similarity.html) metric. |
**<ins>Tracker</ins>:**
Selects which tracker to use and configures it.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `tracker_type` | No | `console` | Which tracker to use. Currently accepts `console` or `wandb`. |
| `data_path` | No | `./models` | Where the tracker will store local data. |
| `verbose` | No | `False` | Enables console logging for non-console trackers. |
Other configuration options are required for the specific trackers. To see which are required, reference the initializer parameters of each [tracker](../dalle2_pytorch/trackers.py).
**<ins>Load</ins>:**
Selects where to load a pretrained model from.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `source` | No | `None` | Supports `file` or `wandb`. |
| `resume` | No | `False` | If the tracker support resuming the run, resume it. |
Other configuration options are required for loading from a specific source. To see which are required, reference the load methods at the top of the [tracker file](../dalle2_pytorch/trackers.py).

View File

@@ -0,0 +1,99 @@
{
"unets": [
{
"dim": 128,
"image_embed_dim": 768,
"cond_dim": 64,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 32,
"attn_heads": 16
}
],
"decoder": {
"image_sizes": [64],
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
"beta_schedule": "cosine",
"learned_variance": true
},
"data": {
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
"embeddings_url": "s3://bucket/embeddings/path/",
"num_workers": 4,
"batch_size": 64,
"start_shard": 0,
"end_shard": 9999999,
"shard_width": 6,
"index_width": 4,
"splits": {
"train": 0.75,
"val": 0.15,
"test": 0.1
},
"shuffle_train": true,
"resample_train": false,
"preprocessing": {
"RandomResizedCrop": {
"size": [128, 128],
"scale": [0.75, 1.0],
"ratio": [1.0, 1.0]
},
"ToTensor": true
}
},
"train": {
"epochs": 20,
"lr": 1e-4,
"wd": 0.01,
"max_grad_norm": 0.5,
"save_every_n_samples": 100000,
"n_sample_images": 6,
"device": "cuda:0",
"epoch_samples": null,
"validation_samples": null,
"use_ema": true,
"ema_beta": 0.99,
"amp": false,
"save_all": false,
"save_latest": true,
"save_best": true,
"unet_training_mask": [true]
},
"evaluate": {
"n_evaluation_samples": 1000,
"FID": {
"feature": 64
},
"IS": {
"feature": 64,
"splits": 10
},
"KID": {
"feature": 64,
"subset_size": 10
},
"LPIPS": {
"net_type": "vgg",
"reduction": "mean"
}
},
"tracker": {
"tracker_type": "console",
"data_path": "./models",
"wandb_entity": "",
"wandb_project": "",
"verbose": false
},
"load": {
"source": null,
"run_path": "",
"file_path": "",
"resume": false
}
}

View File

@@ -1,2 +1,6 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
from dalle2_pytorch.vqgan_vae import VQGanVAE
from x_clip import CLIP

View File

@@ -1,9 +1,52 @@
import click
import torch
import torchvision.transforms as T
from functools import reduce
from pathlib import Path
from dalle2_pytorch import DALLE2, Decoder, DiffusionPrior
def safeget(dictionary, keys, default = None):
return reduce(lambda d, key: d.get(key, default) if isinstance(d, dict) else default, keys.split('.'), dictionary)
def simple_slugify(text, max_length = 255):
return text.replace("-", "_").replace(",", "").replace(" ", "_").replace("|", "--").strip('-_')[:max_length]
def get_pkg_version():
from pkg_resources import get_distribution
return get_distribution('dalle2_pytorch').version
def main():
pass
@click.command()
@click.option('--model', default = './dalle2.pt', help = 'path to trained DALL-E2 model')
@click.option('--cond_scale', default = 2, help = 'conditioning scale (classifier free guidance) in decoder')
@click.argument('text')
def dream(text):
return image
def dream(
model,
cond_scale,
text
):
model_path = Path(model)
full_model_path = str(model_path.resolve())
assert model_path.exists(), f'model not found at {full_model_path}'
loaded = torch.load(str(model_path))
version = safeget(loaded, 'version')
print(f'loading DALL-E2 from {full_model_path}, saved at version {version} - current package version is {get_pkg_version()}')
prior_init_params = safeget(loaded, 'init_params.prior')
decoder_init_params = safeget(loaded, 'init_params.decoder')
model_params = safeget(loaded, 'model_params')
prior = DiffusionPrior(**prior_init_params)
decoder = Decoder(**decoder_init_params)
dalle2 = DALLE2(prior, decoder)
dalle2.load_state_dict(model_params)
image = dalle2(text, cond_scale = cond_scale)
pil_image = T.ToPILImage()(image)
return pil_image.save(f'./{simple_slugify(text)}.png')

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,41 @@
## Dataloaders
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
### Decoder: Image Embedding Dataset
When training the decoder (and up samplers if training together) in isolation, you will need to load images and corresponding image embeddings. This dataset can read two similar types of datasets. First, it can read a [webdataset](https://github.com/webdataset/webdataset) that contains `.jpg` and `.npy` files in the `.tar`s that contain the images and associated image embeddings respectively. Alternatively, you can also specify a source for the embeddings outside of the webdataset. In this case, the path to the embeddings should contain `.npy` files with the same shard numbers as the webdataset and there should be a correspondence between the filename of the `.jpg` and the index of the embedding in the `.npy`. So, for example, `0001.tar` from the webdataset with image `00010509.jpg` (the first 4 digits are the shard number and the last 4 are the index) in it should be paralleled by a `img_emb_0001.npy` which contains a NumPy array with the embedding at index 509.
Generating a dataset of this type:
1. Use [img2dataset](https://github.com/rom1504/img2dataset) to generate a webdataset.
2. Use [clip-retrieval](https://github.com/rom1504/clip-retrieval) to convert the images to embeddings.
3. Use [embedding-dataset-reordering](https://github.com/Veldrovive/embedding-dataset-reordering) to reorder the embeddings into the expected format.
Usage:
```python
from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embedding_dataloader
# Create a dataloader directly.
dataloader = create_image_embedding_dataloader(
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
num_workers=4,
batch_size=32,
shard_width=4, # If a file in the webdataset shard 3 is named 0003039.jpg, we know the shard width is 4 and the last three digits are the index
shuffle_num=200, # Does a shuffle of the data with a buffer size of 200
shuffle_shards=True, # Shuffle the order the shards are read in
resample_shards=False, # Sample shards with replacement. If true, an epoch will be infinite unless stopped manually
)
for img, emb in dataloader:
print(img.shape) # torch.Size([32, 3, 256, 256])
print(emb.shape) # torch.Size([32, 512])
# Train decoder only as shown above
# Or create a dataset without a loader so you can configure it manually
dataset = ImageEmbeddingDataset(
urls="/path/or/url/to/webdataset/{0000..9999}.tar",
embedding_folder_url="path/or/url/to/embeddings/folder",
shard_width=4,
shuffle_shards=True,
resample=False
)
```

View File

@@ -0,0 +1,2 @@
from dalle2_pytorch.dataloaders.decoder_loader import ImageEmbeddingDataset, create_image_embedding_dataloader
from dalle2_pytorch.dataloaders.embedding_wrapper import make_splits

View File

@@ -0,0 +1,234 @@
import os
import webdataset as wds
import torch
import numpy as np
import fsspec
import shutil
def get_shard(filename):
"""
Filenames with shards in them have a consistent structure that we can take advantage of
Standard structure: path/to/file/prefix_string_00001.ext
"""
try:
return filename.split("_")[-1].split(".")[0]
except ValueError:
raise RuntimeError(f"Could not find shard for filename {filename}")
def get_example_file(fs, path, file_format):
"""
Given a file system and a file extension, return the example file
"""
return fs.glob(os.path.join(path, f"*.{file_format}"))[0]
def embedding_inserter(samples, embeddings_url, index_width, handler=wds.handlers.reraise_exception):
"""Given a datum of {"__key__": str, "__url__": str, ...} adds the cooresponding embedding and yields"""
previous_tar_url = None
current_embeddings = None
# Get a reference to an abstract file system where the embeddings are stored
embeddings_fs, embeddings_path = fsspec.core.url_to_fs(embeddings_url)
example_embedding_file = get_example_file(embeddings_fs, embeddings_path, "npy")
example_embedding_shard = get_shard(example_embedding_file)
emb_shard_width = len(example_embedding_shard)
# Easier to get the basename without the shard once than search through for the correct file every time
embedding_file_basename = '_'.join(example_embedding_file.split("_")[:-1]) + "_"
def load_corresponding_embeds(tar_url):
"""Finds and reads the npy files that contains embeddings for the given webdataset tar"""
shard = int(tar_url.split("/")[-1].split(".")[0])
embedding_url = embedding_file_basename + str(shard).zfill(emb_shard_width) + '.npy'
with embeddings_fs.open(embedding_url) as f:
data = np.load(f)
return torch.from_numpy(data)
for sample in samples:
try:
tar_url = sample["__url__"]
key = sample["__key__"]
if tar_url != previous_tar_url:
# If the tar changed, we need to download new embeddings
# This means if we shuffle before inserting it will load many more files than we expect and be very inefficient.
previous_tar_url = tar_url
current_embeddings = load_corresponding_embeds(tar_url)
embedding_index = int(key[-index_width:])
embedding = current_embeddings[embedding_index]
# We need to check if this sample is nonzero. If it is, this embedding is not valid and we should continue to the next loop
if torch.count_nonzero(embedding) == 0:
raise RuntimeError(f"Webdataset had a sample, but no embedding was found. ImgShard: {key[:-index_width]} - Index: {key[-index_width:]}")
sample["npy"] = embedding
yield sample
except Exception as exn: # From wds implementation
if handler(exn):
continue
else:
break
insert_embedding = wds.filters.pipelinefilter(embedding_inserter)
def unassociated_shard_skipper(tarfiles, embeddings_url, handler=wds.handlers.reraise_exception):
"""Finds if the is a corresponding embedding for the tarfile at { url: [URL] }"""
embeddings_fs, embeddings_path = fsspec.core.url_to_fs(embeddings_url)
embedding_files = embeddings_fs.ls(embeddings_path)
get_embedding_shard = lambda embedding_file: int(embedding_file.split("_")[-1].split(".")[0])
embedding_shards = set([get_embedding_shard(filename) for filename in embedding_files]) # Sets have O(1) check for member
get_tar_shard = lambda tar_file: int(tar_file.split("/")[-1].split(".")[0])
for tarfile in tarfiles:
try:
webdataset_shard = get_tar_shard(tarfile["url"])
# If this shard has an associated embeddings file, we pass it through. Otherwise we iterate until we do have one
if webdataset_shard in embedding_shards:
yield tarfile
except Exception as exn: # From wds implementation
if handler(exn):
continue
else:
break
skip_unassociated_shards = wds.filters.pipelinefilter(unassociated_shard_skipper)
def verify_keys(samples, handler=wds.handlers.reraise_exception):
"""
Requires that both the image and embedding are present in the sample
This is important to do as a user may forget they do not have embeddings in their webdataset and neglect to add them using the embedding_folder_url parameter.
"""
for sample in samples:
try:
assert "jpg" in sample, f"Sample {sample['__key__']} missing image"
assert "npy" in sample, f"Sample {sample['__key__']} missing embedding. Did you set embedding_folder_url?"
yield sample
except Exception as exn: # From wds implementation
if handler(exn):
continue
else:
break
class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
"""
A fluid interface wrapper for DataPipline that returns image embedding pairs
Reads embeddings as npy files from the webdataset if they exist. If embedding_folder_url is set, they will be inserted in from the alternate source.
"""
def __init__(
self,
urls,
embedding_folder_url=None,
index_width=None,
img_preproc=None,
extra_keys=[],
handler=wds.handlers.reraise_exception,
resample=False,
shuffle_shards=True
):
"""
Modeled directly off of the WebDataset constructor
:param urls: A url pointing to the tar files of the webdataset formatted as /path/to/webdataset/{0000..9999}.tar
:param embedding_folder_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset.
Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros.
:param index_width: The number of digits in the index. This is used to align the embedding index with the image index.
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width.
:param img_preproc: This function is run on the img before it is batched and returned. Useful for data augmentation or converting to torch tensor.
:param handler: A webdataset handler.
:param resample: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely.
:param shuffle_shards: If true, shuffle the shards before resampling. This cannot be true if resample is true.
"""
super().__init__()
keys = ["jpg", "npy"] + extra_keys
self.key_map = {key: i for i, key in enumerate(keys)}
self.resampling = resample
self.img_preproc = img_preproc
# If s3, check if s3fs is installed and s3cmd is installed and check if the data is piped instead of straight up
if (isinstance(urls, str) and "s3:" in urls) or (isinstance(urls, list) and any(["s3:" in url for url in urls])):
# Then this has an s3 link for the webdataset and we need extra packages
if shutil.which("s3cmd") is None:
raise RuntimeError("s3cmd is required for s3 webdataset")
if "s3:" in embedding_folder_url:
# Then the embeddings are being loaded from s3 and fsspec requires s3fs
try:
import s3fs
except ImportError:
raise RuntimeError("s3fs is required to load embeddings from s3")
# Add the shardList and randomize or resample if requested
if resample:
assert not shuffle_shards, "Cannot both resample and shuffle"
self.append(wds.ResampledShards(urls))
else:
self.append(wds.SimpleShardList(urls))
if shuffle_shards:
self.append(wds.filters.shuffle(1000))
if embedding_folder_url is not None:
# There may be webdataset shards that do not have a embedding shard associated with it. If we do not skip these, they would cause issues.
self.append(skip_unassociated_shards(embeddings_url=embedding_folder_url, handler=handler))
self.append(wds.split_by_node)
self.append(wds.split_by_worker)
self.append(wds.tarfile_to_samples(handler=handler))
self.append(wds.decode("pilrgb", handler=handler))
if embedding_folder_url is not None:
# Then we are loading embeddings for a remote source
assert index_width is not None, "Reading embeddings separately requires index width length to be given"
self.append(insert_embedding(embeddings_url=embedding_folder_url, index_width=index_width, handler=handler))
self.append(verify_keys)
# Apply preprocessing
self.append(wds.map(self.preproc))
self.append(wds.to_tuple(*keys))
def preproc(self, sample):
"""Applies the preprocessing for images"""
if self.img_preproc is not None:
sample["jpg"] = self.img_preproc(sample["jpg"])
return sample
def create_image_embedding_dataloader(
tar_url,
num_workers,
batch_size,
embeddings_url=None,
index_width=None,
shuffle_num = None,
shuffle_shards = True,
resample_shards = False,
img_preproc=None,
extra_keys=[],
handler=wds.handlers.reraise_exception#warn_and_continue
):
"""
Convenience function to create an image embedding dataseta and dataloader in one line
:param tar_url: A url pointing to the tar files of the webdataset formatted as /path/to/webdataset/{0000..9999}.tar
:param num_workers: The number of workers to use for the dataloader
:param batch_size: The batch size to use for the dataloader
:param embeddings_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset.
Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros.
:param index_width: The number of digits in the index. This is used to align the embedding index with the image index.
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width.
:param shuffle_num: If not None, shuffle the dataset with this size buffer after sampling.
:param shuffle_shards: If true, shuffle the shards before sampling. This cannot be true if resample is true.
:param resample_shards: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely.
:param handler: A webdataset handler.
"""
ds = ImageEmbeddingDataset(
tar_url,
embeddings_url,
index_width=index_width,
shuffle_shards=shuffle_shards,
resample=resample_shards,
extra_keys=extra_keys,
img_preproc=img_preproc,
handler=handler
)
if shuffle_num is not None and shuffle_num > 0:
ds.shuffle(1000)
return wds.WebLoader(
ds,
num_workers=num_workers,
batch_size=batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False
)

View File

@@ -0,0 +1,180 @@
from torch.utils.data import IterableDataset
from torch import from_numpy
from clip import tokenize
from embedding_reader import EmbeddingReader
class PriorEmbeddingLoader(IterableDataset):
def __init__(
self,
text_conditioned: bool,
batch_size: int,
start: int,
stop: int,
image_reader,
text_reader: EmbeddingReader = None,
device: str = "cpu",
) -> None:
super(PriorEmbeddingLoader).__init__()
self.text_conditioned = text_conditioned
if not self.text_conditioned:
self.text_reader = text_reader
self.image_reader = image_reader
self.batch_size = batch_size
self.start = start
self.stop = stop
self.device = device
def __iter__(self):
self.n = 0
loader_args = dict(
batch_size=self.batch_size,
start=self.start,
end=self.stop,
show_progress=False,
)
if self.text_conditioned:
self.loader = self.image_reader(**loader_args)
else:
self.loader = zip(
self.image_reader(**loader_args), self.text_reader(**loader_args)
)
return self
def __next__(self):
try:
return self.get_sample()
except StopIteration:
raise StopIteration
def get_sample(self):
"""
pre-proocess data from either reader into a common format
"""
self.n += 1
if self.text_conditioned:
image_embedding, caption = next(self.loader)
image_embedding = from_numpy(image_embedding).to(self.device)
tokenized_caption = tokenize(
caption["caption"].to_list(), truncate=True
).to(self.device)
return image_embedding, tokenized_caption
else:
(image_embedding, _), (text_embedding, _) = next(self.loader)
image_embedding = from_numpy(image_embedding).to(self.device)
text_embedding = from_numpy(text_embedding).to(self.device)
return image_embedding, text_embedding
def make_splits(
text_conditioned: bool,
batch_size: int,
num_data_points: int,
train_split: float,
eval_split: float,
device: str,
img_url: str,
meta_url: str = None,
txt_url: str = None,
):
assert img_url is not None, "Must supply some image embeddings"
if text_conditioned:
assert meta_url is not None, "Must supply metadata url if text-conditioning"
image_reader = EmbeddingReader(
embeddings_folder=img_url,
file_format="parquet_npy",
meta_columns=["caption"],
metadata_folder=meta_url,
)
# compute split points
if num_data_points > image_reader.count:
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
num_data_points = image_reader.count
train_set_size = int(train_split * num_data_points)
eval_set_size = int(eval_split * num_data_points)
eval_stop = int(train_set_size + eval_set_size)
train_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=0,
stop=train_set_size,
device=device,
)
eval_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=train_set_size,
stop=eval_stop,
device=device,
)
test_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=eval_stop,
stop=int(num_data_points),
device=device,
)
else:
assert (
txt_url is not None
), "Must supply text embedding url if not text-conditioning"
image_reader = EmbeddingReader(img_url, file_format="npy")
text_reader = EmbeddingReader(txt_url, file_format="npy")
# compute split points
if num_data_points > image_reader.count:
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
num_data_points = image_reader.count
train_set_size = int(train_split * num_data_points)
eval_set_size = int(eval_split * num_data_points)
eval_stop = int(train_set_size + eval_set_size)
train_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=0,
stop=train_set_size,
device=device,
)
eval_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=train_set_size,
stop=eval_stop,
device=device,
)
test_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=eval_stop,
stop=int(num_data_points),
device=device,
)
return train_loader, eval_loader, test_loader

View File

@@ -0,0 +1,59 @@
from pathlib import Path
import torch
from torch.utils import data
from torchvision import transforms, utils
from PIL import Image
# helpers functions
def cycle(dl):
while True:
for data in dl:
yield data
# dataset and dataloader
class Dataset(data.Dataset):
def __init__(
self,
folder,
image_size,
exts = ['jpg', 'jpeg', 'png']
):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(image_size),
transforms.ToTensor()
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path)
return self.transform(img)
def get_images_dataloader(
folder,
*,
batch_size,
image_size,
shuffle = True,
cycle_dl = True,
pin_memory = True
):
ds = Dataset(folder, image_size)
dl = data.DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory)
if cycle_dl:
dl = cycle(dl)
return dl

View File

@@ -0,0 +1,31 @@
from torch.optim import AdamW, Adam
def separate_weight_decayable_params(params):
no_wd_params = set([param for param in params if param.ndim < 2])
wd_params = set(params) - no_wd_params
return wd_params, no_wd_params
def get_optimizer(
params,
lr = 1e-4,
wd = 1e-2,
betas = (0.9, 0.999),
eps = 1e-8,
filter_by_requires_grad = False,
**kwargs
):
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))
if wd == 0:
return Adam(params, lr = lr, betas = betas, eps = eps)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
param_groups = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)

115
dalle2_pytorch/trackers.py Normal file
View File

@@ -0,0 +1,115 @@
import os
from pathlib import Path
import importlib
from itertools import zip_longest
import torch
from torch import nn
# constants
DEFAULT_DATA_PATH = './.tracker-data'
# helper functions
def exists(val):
return val is not None
def import_or_print_error(pkg_name, err_str = None):
try:
return importlib.import_module(pkg_name)
except ModuleNotFoundError as e:
if exists(err_str):
print(err_str)
exit()
# load state dict functions
def load_wandb_state_dict(run_path, file_path, **kwargs):
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
file_reference = wandb.restore(file_path, run_path=run_path)
return torch.load(file_reference.name)
def load_local_state_dict(file_path, **kwargs):
return torch.load(file_path)
# base class
class BaseTracker(nn.Module):
def __init__(self, data_path = DEFAULT_DATA_PATH):
super().__init__()
self.data_path = Path(data_path)
self.data_path.mkdir(parents = True, exist_ok = True)
def init(self, config, **kwargs):
raise NotImplementedError
def log(self, log, **kwargs):
raise NotImplementedError
def log_images(self, images, **kwargs):
raise NotImplementedError
def save_state_dict(self, state_dict, relative_path, **kwargs):
raise NotImplementedError
def recall_state_dict(self, recall_source, *args, **kwargs):
"""
Loads a state dict from any source.
Since a user may wish to load a model from a different source than their own tracker (i.e. tracking using wandb but recalling from disk),
this should not be linked to any individual tracker.
"""
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
if recall_source == 'wandb':
return load_wandb_state_dict(*args, **kwargs)
elif recall_source == 'local':
return load_local_state_dict(*args, **kwargs)
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
# basic stdout class
class ConsoleTracker(BaseTracker):
def init(self, **config):
print(config)
def log(self, log, **kwargs):
print(log)
def log_images(self, images, **kwargs): # noop for logging images
pass
def save_state_dict(self, state_dict, relative_path, **kwargs):
torch.save(state_dict, str(self.data_path / relative_path))
# basic wandb class
class WandbTracker(BaseTracker):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb experiment tracker')
os.environ["WANDB_SILENT"] = "true"
def init(self, **config):
self.wandb.init(**config)
def log(self, log, verbose=False, **kwargs):
if verbose:
print(log)
self.wandb.log(log, **kwargs)
def log_images(self, images, captions=[], image_section="images", **kwargs):
"""
Takes a tensor of images and a list of captions and logs them to wandb.
"""
wandb_images = [self.wandb.Image(image, caption=caption) for image, caption in zip_longest(images, captions)]
self.log({ image_section: wandb_images }, **kwargs)
def save_state_dict(self, state_dict, relative_path, **kwargs):
"""
Saves a state_dict to disk and uploads it
"""
full_path = str(self.data_path / relative_path)
torch.save(state_dict, full_path)
self.wandb.save(full_path, base_path = str(self.data_path)) # Upload and keep relative to data_path

View File

@@ -0,0 +1,135 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
class UnetConfig(BaseModel):
dim: int
dim_mults: List[int]
image_embed_dim: int = None
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
attn_heads: int = 16
class Config:
extra = "allow"
class DecoderConfig(BaseModel):
image_size: int = None
image_sizes: Union[List[int], Tuple[int]] = None
channels: int = 3
timesteps: int = 1000
loss_type: str = 'l2'
beta_schedule: str = 'cosine'
learned_variance: bool = True
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
if exists(values.get('image_size')) ^ exists(image_sizes):
return image_sizes
raise ValueError('either image_size or image_sizes is required, but not both')
class Config:
extra = "allow"
class TrainSplitConfig(BaseModel):
train: float = 0.75
val: float = 0.15
test: float = 0.1
@root_validator
def validate_all(cls, fields):
if sum([*fields.values()]) != 1.:
raise ValueError(f'{fields.keys()} must sum to 1.0')
return fields
class DecoderDataConfig(BaseModel):
webdataset_base_url: str # path to a webdataset with jpg images
embeddings_url: str # path to .npy files with embeddings
num_workers: int = 4
batch_size: int = 64
start_shard: int = 0
end_shard: int = 9999999
shard_width: int = 6
index_width: int = 4
splits: TrainSplitConfig
shuffle_train: bool = True
resample_train: bool = False
preprocessing: Dict[str, Any] = {'ToTensor': True}
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: float = 1e-4
wd: float = 0.01
max_grad_norm: float = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
save_all: bool = False # Whether to preserve all checkpoints
save_latest: bool = True # Whether to always save the latest checkpoint
save_best: bool = True # Whether to save the best checkpoint
unet_training_mask: List[bool] = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
FID: Dict[str, Any] = None
IS: Dict[str, Any] = None
KID: Dict[str, Any] = None
LPIPS: Dict[str, Any] = None
class TrackerConfig(BaseModel):
tracker_type: str = 'console' # Decoder currently supports console and wandb
data_path: str = './models' # The path where files will be saved locally
init_config: Dict[str, Any] = None
wandb_entity: str = '' # Only needs to be set if tracker_type is wandb
wandb_project: str = ''
verbose: bool = False # Whether to print console logging for non-console trackers
class DecoderLoadConfig(BaseModel):
source: str = None # Supports file and wandb
run_path: str = '' # Used only if source is wandb
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
resume: bool = False # If using wandb, whether to resume the run
class TrainDecoderConfig(BaseModel):
unets: List[UnetConfig]
decoder: DecoderConfig
data: DecoderDataConfig
train: DecoderTrainConfig
evaluate: DecoderEvaluateConfig
tracker: TrackerConfig
load: DecoderLoadConfig
@classmethod
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
return cls(**config)
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.data.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)

491
dalle2_pytorch/trainer.py Normal file
View File

@@ -0,0 +1,491 @@
import time
import copy
from math import ceil
from functools import partial, wraps
from collections.abc import Iterable
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
from dalle2_pytorch.optimizer import get_optimizer
import numpy as np
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
# decorators
def cast_torch_tensor(fn):
@wraps(fn)
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', next(model.parameters()).device)
cast_device = kwargs.pop('_cast_device', True)
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
split_kwargs_index = len(all_args) - len(kwargs_keys)
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
out = fn(model, *args, **kwargs)
return out
return inner
# gradient accumulation functions
def split_iterable(it, split_size):
accum = []
for ind in range(ceil(len(it) / split_size)):
start_index = ind * split_size
accum.append(it[start_index: (start_index + split_size)])
return accum
def split(t, split_size = None):
if not exists(split_size):
return t
if isinstance(t, torch.Tensor):
return t.split(split_size, dim = 0)
if isinstance(t, Iterable):
return split_iterable(t, split_size)
return TypeError
def find_first(cond, arr):
for el in arr:
if cond(el):
return el
return None
def split_args_and_kwargs(*args, split_size = None, **kwargs):
all_args = (*args, *kwargs.values())
len_all_args = len(all_args)
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
assert exists(first_tensor)
batch_size = len(first_tensor)
split_size = default(split_size, batch_size)
num_chunks = ceil(batch_size / split_size)
dict_len = len(kwargs)
dict_keys = kwargs.keys()
split_kwargs_index = len_all_args - dict_len
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
chunk_sizes = tuple(map(len, split_all_args[0]))
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
def load_diffusion_model(dprior_path, device):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior, loaded_obj
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print_ribbon('Saving checkpoint')
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# exponential moving average wrapper
class EMA(nn.Module):
def __init__(
self,
model,
beta = 0.9999,
update_after_step = 1000,
update_every = 10,
):
super().__init__()
self.beta = beta
self.online_model = model
self.ema_model = copy.deepcopy(model)
self.update_every = update_every
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def copy_params_from_model_to_ema(self):
self.ema_model.state_dict(self.online_model.state_dict())
def update(self):
self.step += 1
if (self.step % self.update_every) != 0:
return
if self.step <= self.update_after_step:
self.copy_params_from_model_to_ema()
return
if not self.initted:
self.copy_params_from_model_to_ema()
self.initted.data.copy_(torch.Tensor([True]))
self.update_moving_average(self.ema_model, self.online_model)
def update_moving_average(self, ma_model, current_model):
def calculate_ema(beta, old, new):
if not exists(old):
return new
return old * beta + (1 - beta) * new
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = calculate_ema(self.beta, old_weight, up_weight)
for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()):
new_buffer_value = calculate_ema(self.beta, ma_buffer, current_buffer)
ma_buffer.copy_(new_buffer_value)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
# diffusion prior trainer
def prior_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
return torch.cat(outputs, dim = 0)
return inner
class DiffusionPriorTrainer(nn.Module):
def __init__(
self,
diffusion_prior,
use_ema = True,
lr = 3e-4,
wd = 1e-2,
eps = 1e-6,
max_grad_norm = None,
amp = False,
**kwargs
):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
self.diffusion_prior = diffusion_prior
# exponential moving average
self.use_ema = use_ema
if self.use_ema:
self.ema_diffusion_prior = EMA(diffusion_prior, **ema_kwargs)
# optimizer and mixed precision stuff
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.optimizer = get_optimizer(
diffusion_prior.parameters(),
lr = lr,
wd = wd,
eps = eps,
**kwargs
)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
def update(self):
if exists(self.max_grad_norm):
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.use_ema:
self.ema_diffusion_prior.update()
self.step += 1
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def p_sample_loop(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def sample(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
@torch.no_grad()
def sample_batch_size(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
@cast_torch_tensor
def forward(
self,
*args,
max_batch_size = None,
**kwargs
):
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with autocast(enabled = self.amp):
loss = self.diffusion_prior(*chunked_args, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.scaler.scale(loss).backward()
return total_loss
# decoder trainer
def decoder_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
if self.decoder.unconditional:
batch_size = kwargs.get('batch_size')
batch_sizes = num_to_groups(batch_size, max_batch_size)
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
else:
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
return torch.cat(outputs, dim = 0)
return inner
class DecoderTrainer(nn.Module):
def __init__(
self,
decoder,
use_ema = True,
lr = 1e-4,
wd = 1e-2,
eps = 1e-8,
max_grad_norm = 0.5,
amp = False,
**kwargs
):
super().__init__()
assert isinstance(decoder, Decoder)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
self.decoder = decoder
self.num_unets = len(self.decoder.unets)
self.use_ema = use_ema
self.ema_unets = nn.ModuleList([])
self.amp = amp
# be able to finely customize learning rate, weight decay
# per unet
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
**kwargs
)
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = amp)
setattr(self, f'scaler{ind}', scaler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def scale(self, loss, *, unet_number):
assert 1 <= unet_number <= self.num_unets
index = unet_number - 1
scaler = getattr(self, f'scaler{index}')
return scaler.scale(loss)
def update(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
index = unet_number - 1
unet = self.decoder.unets[index]
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
if exists(self.max_grad_norm):
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if self.use_ema:
ema_unet = self.ema_unets[index]
ema_unet.update()
self.step += 1
@torch.no_grad()
@cast_torch_tensor
@decoder_sample_in_chunks
def sample(self, *args, **kwargs):
if kwargs.pop('use_non_ema', False) or not self.use_ema:
return self.decoder.sample(*args, **kwargs)
trainable_unets = self.decoder.unets
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
output = self.decoder.sample(*args, **kwargs)
self.decoder.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
ema.restore_ema_model_device()
return output
@cast_torch_tensor
def forward(
self,
*args,
unet_number = None,
max_batch_size = None,
**kwargs
):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with autocast(enabled = self.amp):
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.scale(loss, unet_number = unet_number).backward()
return total_loss

11
dalle2_pytorch/utils.py Normal file
View File

@@ -0,0 +1,11 @@
import time
class Timer:
def __init__(self):
self.reset()
def reset(self):
self.last_time = time.time()
def elapsed(self):
return time.time() - self.last_time

765
dalle2_pytorch/vqgan_vae.py Normal file
View File

@@ -0,0 +1,765 @@
import copy
import math
from math import sqrt
from functools import partial, wraps
from vector_quantize_pytorch import VectorQuantize as VQ
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.autograd import grad as torch_grad
import torchvision
from einops import rearrange, reduce, repeat
from einops_exts import rearrange_many
from einops.layers.torch import Rearrange
# constants
MList = nn.ModuleList
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# decorators
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def remove_vgg(fn):
@wraps(fn)
def inner(self, *args, **kwargs):
has_vgg = hasattr(self, 'vgg')
if has_vgg:
vgg = self.vgg
delattr(self, 'vgg')
out = fn(self, *args, **kwargs)
if has_vgg:
self.vgg = vgg
return out
return inner
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# tensor helper functions
def log(t, eps = 1e-10):
return torch.log(t + eps)
def gradient_penalty(images, output, weight = 10):
batch_size = images.shape[0]
gradients = torch_grad(outputs = output, inputs = images,
grad_outputs = torch.ones(output.size(), device = images.device),
create_graph = True, retain_graph = True, only_inputs = True)[0]
gradients = rearrange(gradients, 'b ... -> b (...)')
return weight * ((gradients.norm(2, dim = 1) - 1) ** 2).mean()
def l2norm(t):
return F.normalize(t, dim = -1)
def leaky_relu(p = 0.1):
return nn.LeakyReLU(0.1)
def stable_softmax(t, dim = -1, alpha = 32 ** 2):
t = t / alpha
t = t - torch.amax(t, dim = dim, keepdim = True).detach()
return (t * alpha).softmax(dim = dim)
def safe_div(numer, denom, eps = 1e-8):
return numer / (denom + eps)
# gan losses
def hinge_discr_loss(fake, real):
return (F.relu(1 + fake) + F.relu(1 - real)).mean()
def hinge_gen_loss(fake):
return -fake.mean()
def bce_discr_loss(fake, real):
return (-log(1 - torch.sigmoid(fake)) - log(torch.sigmoid(real))).mean()
def bce_gen_loss(fake):
return -log(torch.sigmoid(fake)).mean()
def grad_layer_wrt_loss(loss, layer):
return torch_grad(
outputs = loss,
inputs = layer,
grad_outputs = torch.ones_like(loss),
retain_graph = True
)[0].detach()
# vqgan vae
class LayerNormChan(nn.Module):
def __init__(
self,
dim,
eps = 1e-5
):
super().__init__()
self.eps = eps
self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.gamma
# discriminator
class Discriminator(nn.Module):
def __init__(
self,
dims,
channels = 3,
groups = 16,
init_kernel_size = 5
):
super().__init__()
dim_pairs = zip(dims[:-1], dims[1:])
self.layers = MList([nn.Sequential(nn.Conv2d(channels, dims[0], init_kernel_size, padding = init_kernel_size // 2), leaky_relu())])
for dim_in, dim_out in dim_pairs:
self.layers.append(nn.Sequential(
nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1),
nn.GroupNorm(groups, dim_out),
leaky_relu()
))
dim = dims[-1]
self.to_logits = nn.Sequential( # return 5 x 5, for PatchGAN-esque training
nn.Conv2d(dim, dim, 1),
leaky_relu(),
nn.Conv2d(dim, 1, 4)
)
def forward(self, x):
for net in self.layers:
x = net(x)
return self.to_logits(x)
# positional encoding
class ContinuousPositionBias(nn.Module):
""" from https://arxiv.org/abs/2111.09883 """
def __init__(self, *, dim, heads, layers = 2):
super().__init__()
self.net = MList([])
self.net.append(nn.Sequential(nn.Linear(2, dim), leaky_relu()))
for _ in range(layers - 1):
self.net.append(nn.Sequential(nn.Linear(dim, dim), leaky_relu()))
self.net.append(nn.Linear(dim, heads))
self.register_buffer('rel_pos', None, persistent = False)
def forward(self, x):
n, device = x.shape[-1], x.device
fmap_size = int(sqrt(n))
if not exists(self.rel_pos):
pos = torch.arange(fmap_size, device = device)
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = rearrange(grid, 'i c -> i 1 c') - rearrange(grid, 'j c -> 1 j c')
rel_pos = torch.sign(rel_pos) * torch.log(rel_pos.abs() + 1)
self.register_buffer('rel_pos', rel_pos, persistent = False)
rel_pos = self.rel_pos.float()
for layer in self.net:
rel_pos = layer(rel_pos)
bias = rearrange(rel_pos, 'i j h -> h i j')
return x + bias
# resnet encoder / decoder
class ResnetEncDec(nn.Module):
def __init__(
self,
dim,
*,
channels = 3,
layers = 4,
layer_mults = None,
num_resnet_blocks = 1,
resnet_groups = 16,
first_conv_kernel_size = 5,
use_attn = True,
attn_dim_head = 64,
attn_heads = 8,
attn_dropout = 0.,
):
super().__init__()
assert dim % resnet_groups == 0, f'dimension {dim} must be divisible by {resnet_groups} (groups for the groupnorm)'
self.layers = layers
self.encoders = MList([])
self.decoders = MList([])
layer_mults = default(layer_mults, list(map(lambda t: 2 ** t, range(layers))))
assert len(layer_mults) == layers, 'layer multipliers must be equal to designated number of layers'
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
self.encoded_dim = dims[-1]
dim_pairs = zip(dims[:-1], dims[1:])
append = lambda arr, t: arr.append(t)
prepend = lambda arr, t: arr.insert(0, t)
if not isinstance(num_resnet_blocks, tuple):
num_resnet_blocks = (*((0,) * (layers - 1)), num_resnet_blocks)
if not isinstance(use_attn, tuple):
use_attn = (*((False,) * (layers - 1)), use_attn)
assert len(num_resnet_blocks) == layers, 'number of resnet blocks config must be equal to number of layers'
assert len(use_attn) == layers
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu()))
if layer_use_attn:
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
for _ in range(layer_num_resnet_blocks):
append(self.encoders, ResBlock(dim_out, groups = resnet_groups))
prepend(self.decoders, GLUResBlock(dim_out, groups = resnet_groups))
if layer_use_attn:
append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2))
append(self.decoders, nn.Conv2d(dim, channels, 1))
def get_encoded_fmap_size(self, image_size):
return image_size // (2 ** self.layers)
@property
def last_dec_layer(self):
return self.decoders[-1].weight
def encode(self, x):
for enc in self.encoders:
x = enc(x)
return x
def decode(self, x):
for dec in self.decoders:
x = dec(x)
return x
class GLUResBlock(nn.Module):
def __init__(self, chan, groups = 16):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(chan, chan * 2, 3, padding = 1),
nn.GLU(dim = 1),
nn.GroupNorm(groups, chan),
nn.Conv2d(chan, chan * 2, 3, padding = 1),
nn.GLU(dim = 1),
nn.GroupNorm(groups, chan),
nn.Conv2d(chan, chan, 1)
)
def forward(self, x):
return self.net(x) + x
class ResBlock(nn.Module):
def __init__(self, chan, groups = 16):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(chan, chan, 3, padding = 1),
nn.GroupNorm(groups, chan),
leaky_relu(),
nn.Conv2d(chan, chan, 3, padding = 1),
nn.GroupNorm(groups, chan),
leaky_relu(),
nn.Conv2d(chan, chan, 1)
)
def forward(self, x):
return self.net(x) + x
# vqgan attention layer
class VQGanAttention(nn.Module):
def __init__(
self,
*,
dim,
dim_head = 64,
heads = 8,
dropout = 0.
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = heads * dim_head
self.dropout = nn.Dropout(dropout)
self.pre_norm = LayerNormChan(dim)
self.cpb = ContinuousPositionBias(dim = dim // 4, heads = heads)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1, bias = False)
def forward(self, x):
h = self.heads
height, width, residual = *x.shape[-2:], x.clone()
x = self.pre_norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = h), (q, k, v))
sim = einsum('b h c i, b h c j -> b h i j', q, k) * self.scale
sim = self.cpb(sim)
attn = stable_softmax(sim, dim = -1)
attn = self.dropout(attn)
out = einsum('b h i j, b h c j -> b h c i', attn, v)
out = rearrange(out, 'b h c (x y) -> b (h c) x y', x = height, y = width)
out = self.to_out(out)
return out + residual
# ViT encoder / decoder
class RearrangeImage(nn.Module):
def forward(self, x):
n = x.shape[1]
w = h = int(sqrt(n))
return rearrange(x, 'b (h w) ... -> b h w ...', h = h, w = w)
class Attention(nn.Module):
def __init__(
self,
dim,
*,
heads = 8,
dim_head = 32
):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
def forward(self, x):
h = self.heads
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
def FeedForward(dim, mult = 4):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * mult, bias = False),
nn.GELU(),
nn.Linear(dim * mult, dim, bias = False)
)
class Transformer(nn.Module):
def __init__(
self,
dim,
*,
layers,
dim_head = 32,
heads = 8,
ff_mult = 4
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(layers):
self.layers.append(nn.ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads),
FeedForward(dim = dim, mult = ff_mult)
]))
self.norm = nn.LayerNorm(dim)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class ViTEncDec(nn.Module):
def __init__(
self,
dim,
channels = 3,
layers = 4,
patch_size = 8,
dim_head = 32,
heads = 8,
ff_mult = 4
):
super().__init__()
self.encoded_dim = dim
self.patch_size = patch_size
input_dim = channels * (patch_size ** 2)
self.encoder = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(input_dim, dim),
Transformer(
dim = dim,
dim_head = dim_head,
heads = heads,
ff_mult = ff_mult,
layers = layers
),
RearrangeImage(),
Rearrange('b h w c -> b c h w')
)
self.decoder = nn.Sequential(
Rearrange('b c h w -> b (h w) c'),
Transformer(
dim = dim,
dim_head = dim_head,
heads = heads,
ff_mult = ff_mult,
layers = layers
),
nn.Sequential(
nn.Linear(dim, dim * 4, bias = False),
nn.Tanh(),
nn.Linear(dim * 4, input_dim, bias = False),
),
RearrangeImage(),
Rearrange('b h w (p1 p2 c) -> b c (h p1) (w p2)', p1 = patch_size, p2 = patch_size)
)
def get_encoded_fmap_size(self, image_size):
return image_size // self.patch_size
@property
def last_dec_layer(self):
return self.decoder[-3][-1].weight
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.decoder(x)
# main vqgan-vae classes
class NullVQGanVAE(nn.Module):
def __init__(
self,
*,
channels
):
super().__init__()
self.encoded_dim = channels
self.layers = 0
def get_encoded_fmap_size(self, size):
return size
def copy_for_eval(self):
return self
def encode(self, x):
return x
def decode(self, x):
return x
class VQGanVAE(nn.Module):
def __init__(
self,
*,
dim,
image_size,
channels = 3,
layers = 4,
l2_recon_loss = False,
use_hinge_loss = True,
vgg = None,
vq_codebook_dim = 256,
vq_codebook_size = 512,
vq_decay = 0.8,
vq_commitment_weight = 1.,
vq_kmeans_init = True,
vq_use_cosine_sim = True,
use_vgg_and_gan = True,
vae_type = 'resnet',
discr_layers = 4,
**kwargs
):
super().__init__()
vq_kwargs, kwargs = groupby_prefix_and_trim('vq_', kwargs)
encdec_kwargs, kwargs = groupby_prefix_and_trim('encdec_', kwargs)
self.image_size = image_size
self.channels = channels
self.codebook_size = vq_codebook_size
if vae_type == 'resnet':
enc_dec_klass = ResnetEncDec
elif vae_type == 'vit':
enc_dec_klass = ViTEncDec
else:
raise ValueError(f'{vae_type} not valid')
self.enc_dec = enc_dec_klass(
dim = dim,
channels = channels,
layers = layers,
**encdec_kwargs
)
self.vq = VQ(
dim = self.enc_dec.encoded_dim,
codebook_dim = vq_codebook_dim,
codebook_size = vq_codebook_size,
decay = vq_decay,
commitment_weight = vq_commitment_weight,
accept_image_fmap = True,
kmeans_init = vq_kmeans_init,
use_cosine_sim = vq_use_cosine_sim,
**vq_kwargs
)
# reconstruction loss
self.recon_loss_fn = F.mse_loss if l2_recon_loss else F.l1_loss
# turn off GAN and perceptual loss if grayscale
self.vgg = None
self.discr = None
self.use_vgg_and_gan = use_vgg_and_gan
if not use_vgg_and_gan:
return
# preceptual loss
if exists(vgg):
self.vgg = vgg
else:
self.vgg = torchvision.models.vgg16(pretrained = True)
self.vgg.classifier = nn.Sequential(*self.vgg.classifier[:-2])
# gan related losses
layer_mults = list(map(lambda t: 2 ** t, range(discr_layers)))
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
self.discr = Discriminator(dims = dims, channels = channels)
self.discr_loss = hinge_discr_loss if use_hinge_loss else bce_discr_loss
self.gen_loss = hinge_gen_loss if use_hinge_loss else bce_gen_loss
@property
def encoded_dim(self):
return self.enc_dec.encoded_dim
def get_encoded_fmap_size(self, image_size):
return self.enc_dec.get_encoded_fmap_size(image_size)
def copy_for_eval(self):
device = next(self.parameters()).device
vae_copy = copy.deepcopy(self.cpu())
if vae_copy.use_vgg_and_gan:
del vae_copy.discr
del vae_copy.vgg
vae_copy.eval()
return vae_copy.to(device)
@remove_vgg
def state_dict(self, *args, **kwargs):
return super().state_dict(*args, **kwargs)
@remove_vgg
def load_state_dict(self, *args, **kwargs):
return super().load_state_dict(*args, **kwargs)
@property
def codebook(self):
return self.vq.codebook
def encode(self, fmap):
fmap = self.enc_dec.encode(fmap)
return fmap
def decode(self, fmap, return_indices_and_loss = False):
fmap, indices, commit_loss = self.vq(fmap)
fmap = self.enc_dec.decode(fmap)
if not return_indices_and_loss:
return fmap
return fmap, indices, commit_loss
def forward(
self,
img,
return_loss = False,
return_discr_loss = False,
return_recons = False,
add_gradient_penalty = True
):
batch, channels, height, width, device = *img.shape, img.device
assert height == self.image_size and width == self.image_size, 'height and width of input image must be equal to {self.image_size}'
assert channels == self.channels, 'number of channels on image or sketch is not equal to the channels set on this VQGanVAE'
fmap = self.encode(img)
fmap, indices, commit_loss = self.decode(fmap, return_indices_and_loss = True)
if not return_loss and not return_discr_loss:
return fmap
assert return_loss ^ return_discr_loss, 'you should either return autoencoder loss or discriminator loss, but not both'
# whether to return discriminator loss
if return_discr_loss:
assert exists(self.discr), 'discriminator must exist to train it'
fmap.detach_()
img.requires_grad_()
fmap_discr_logits, img_discr_logits = map(self.discr, (fmap, img))
discr_loss = self.discr_loss(fmap_discr_logits, img_discr_logits)
if add_gradient_penalty:
gp = gradient_penalty(img, img_discr_logits)
loss = discr_loss + gp
if return_recons:
return loss, fmap
return loss
# reconstruction loss
recon_loss = self.recon_loss_fn(fmap, img)
# early return if training on grayscale
if not self.use_vgg_and_gan:
if return_recons:
return recon_loss, fmap
return recon_loss
# perceptual loss
img_vgg_input = img
fmap_vgg_input = fmap
if img.shape[1] == 1:
# handle grayscale for vgg
img_vgg_input, fmap_vgg_input = map(lambda t: repeat(t, 'b 1 ... -> b c ...', c = 3), (img_vgg_input, fmap_vgg_input))
img_vgg_feats = self.vgg(img_vgg_input)
recon_vgg_feats = self.vgg(fmap_vgg_input)
perceptual_loss = F.mse_loss(img_vgg_feats, recon_vgg_feats)
# generator loss
gen_loss = self.gen_loss(self.discr(fmap))
# calculate adaptive weight
last_dec_layer = self.enc_dec.last_dec_layer
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p = 2)
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p = 2)
adaptive_weight = safe_div(norm_grad_wrt_perceptual_loss, norm_grad_wrt_gen_loss)
adaptive_weight.clamp_(max = 1e4)
# combine losses
loss = recon_loss + perceptual_loss + commit_loss + adaptive_weight * gen_loss
if return_recons:
return loss, fmap
return loss

View File

@@ -0,0 +1,277 @@
from math import sqrt
import copy
from random import choice
from pathlib import Path
from shutil import rmtree
from PIL import Image
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as T
from torchvision.datasets import ImageFolder
from torchvision.utils import make_grid, save_image
from einops import rearrange
from dalle2_pytorch.train import EMA
from dalle2_pytorch.vqgan_vae import VQGanVAE
from dalle2_pytorch.optimizer import get_optimizer
# helpers
def exists(val):
return val is not None
def noop(*args, **kwargs):
pass
def cycle(dl):
while True:
for data in dl:
yield data
def cast_tuple(t):
return t if isinstance(t, (tuple, list)) else (t,)
def yes_or_no(question):
answer = input(f'{question} (y/n) ')
return answer.lower() in ('yes', 'y')
def accum_log(log, new_logs):
for key, new_value in new_logs.items():
old_value = log.get(key, 0.)
log[key] = old_value + new_value
return log
# classes
class ImageDataset(Dataset):
def __init__(
self,
folder,
image_size,
exts = ['jpg', 'jpeg', 'png']
):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
print(f'{len(self.paths)} training samples found at {folder}')
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(image_size),
T.RandomHorizontalFlip(),
T.CenterCrop(image_size),
T.ToTensor()
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path)
return self.transform(img)
# main trainer class
class VQGanVAETrainer(nn.Module):
def __init__(
self,
vae,
*,
num_train_steps,
lr,
batch_size,
folder,
grad_accum_every,
wd = 0.,
save_results_every = 100,
save_model_every = 1000,
results_folder = './results',
valid_frac = 0.05,
random_split_seed = 42,
ema_beta = 0.995,
ema_update_after_step = 2000,
ema_update_every = 10,
apply_grad_penalty_every = 4,
amp = False
):
super().__init__()
assert isinstance(vae, VQGanVAE), 'vae must be instance of VQGanVAE'
image_size = vae.image_size
self.vae = vae
self.ema_vae = EMA(vae, update_after_step = ema_update_after_step, update_every = ema_update_every)
self.register_buffer('steps', torch.Tensor([0]))
self.num_train_steps = num_train_steps
self.batch_size = batch_size
self.grad_accum_every = grad_accum_every
all_parameters = set(vae.parameters())
discr_parameters = set(vae.discr.parameters())
vae_parameters = all_parameters - discr_parameters
self.optim = get_optimizer(vae_parameters, lr = lr, wd = wd)
self.discr_optim = get_optimizer(discr_parameters, lr = lr, wd = wd)
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.discr_scaler = GradScaler(enabled = amp)
# create dataset
self.ds = ImageDataset(folder, image_size = image_size)
# split for validation
if valid_frac > 0:
train_size = int((1 - valid_frac) * len(self.ds))
valid_size = len(self.ds) - train_size
self.ds, self.valid_ds = random_split(self.ds, [train_size, valid_size], generator = torch.Generator().manual_seed(random_split_seed))
print(f'training with dataset of {len(self.ds)} samples and validating with randomly splitted {len(self.valid_ds)} samples')
else:
self.valid_ds = self.ds
print(f'training with shared training and valid dataset of {len(self.ds)} samples')
# dataloader
self.dl = cycle(DataLoader(
self.ds,
batch_size = batch_size,
shuffle = True
))
self.valid_dl = cycle(DataLoader(
self.valid_ds,
batch_size = batch_size,
shuffle = True
))
self.save_model_every = save_model_every
self.save_results_every = save_results_every
self.apply_grad_penalty_every = apply_grad_penalty_every
self.results_folder = Path(results_folder)
if len([*self.results_folder.glob('**/*')]) > 0 and yes_or_no('do you want to clear previous experiment checkpoints and results?'):
rmtree(str(self.results_folder))
self.results_folder.mkdir(parents = True, exist_ok = True)
def train_step(self):
device = next(self.vae.parameters()).device
steps = int(self.steps.item())
apply_grad_penalty = not (steps % self.apply_grad_penalty_every)
self.vae.train()
# logs
logs = {}
# update vae (generator)
for _ in range(self.grad_accum_every):
img = next(self.dl)
img = img.to(device)
with autocast(enabled = self.amp):
loss = self.vae(
img,
return_loss = True,
apply_grad_penalty = apply_grad_penalty
)
self.scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'loss': loss.item() / self.grad_accum_every})
self.scaler.step(self.optim)
self.scaler.update()
self.optim.zero_grad()
# update discriminator
if exists(self.vae.discr):
discr_loss = 0
for _ in range(self.grad_accum_every):
img = next(self.dl)
img = img.to(device)
with autocast(enabled = self.amp):
loss = self.vae(img, return_discr_loss = True)
self.discr_scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'discr_loss': loss.item() / self.grad_accum_every})
self.discr_scaler.step(self.discr_optim)
self.discr_scaler.update()
self.discr_optim.zero_grad()
# log
print(f"{steps}: vae loss: {logs['loss']} - discr loss: {logs['discr_loss']}")
# update exponential moving averaged generator
self.ema_vae.update()
# sample results every so often
if not (steps % self.save_results_every):
for model, filename in ((self.ema_vae.ema_model, f'{steps}.ema'), (self.vae, str(steps))):
model.eval()
imgs = next(self.dl)
imgs = imgs.to(device)
recons = model(imgs)
nrows = int(sqrt(self.batch_size))
imgs_and_recons = torch.stack((imgs, recons), dim = 0)
imgs_and_recons = rearrange(imgs_and_recons, 'r b ... -> (b r) ...')
imgs_and_recons = imgs_and_recons.detach().cpu().float().clamp(0., 1.)
grid = make_grid(imgs_and_recons, nrow = 2, normalize = True, value_range = (0, 1))
logs['reconstructions'] = grid
save_image(grid, str(self.results_folder / f'{filename}.png'))
print(f'{steps}: saving to {str(self.results_folder)}')
# save model every so often
if not (steps % self.save_model_every):
state_dict = self.vae.state_dict()
model_path = str(self.results_folder / f'vae.{steps}.pt')
torch.save(state_dict, model_path)
ema_state_dict = self.ema_vae.state_dict()
model_path = str(self.results_folder / f'vae.{steps}.ema.pt')
torch.save(ema_state_dict, model_path)
print(f'{steps}: saving model to {str(self.results_folder)}')
self.steps += 1
return logs
def train(self, log_fn = noop):
device = next(self.vae.parameters()).device
while self.steps < self.num_train_steps:
logs = self.train_step()
log_fn(logs)
print('training complete')

BIN
samples/oxford.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 985 KiB

View File

@@ -10,11 +10,12 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.24',
version = '0.4.2',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/dalle2-pytorch',
keywords = [
'artificial intelligence',
@@ -23,15 +24,26 @@ setup(
],
install_requires=[
'click',
'clip-anytorch',
'coca-pytorch>=0.0.5',
'einops>=0.4',
'einops-exts>=0.0.3',
'embedding-reader',
'kornia>=0.5.4',
'numpy',
'pillow',
'pydantic',
'resize-right>=0.0.2',
'rotary-embedding-torch',
'torch>=1.10',
'torchvision',
'tqdm',
'vector-quantize-pytorch',
'x-clip>=0.4.4',
'youtokentome'
'youtokentome',
'webdataset>=0.2.5',
'fsspec>=2022.1.0',
'torchmetrics[image]>=0.8.0'
],
classifiers=[
'Development Status :: 4 - Beta',

456
train_decoder.py Normal file
View File

@@ -0,0 +1,456 @@
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch.trainer import DecoderTrainer, print_ribbon
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer
import torchvision
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.kid import KernelInceptionDistance
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import webdataset as wds
import click
# constants
TRAIN_CALC_LOSS_EVERY_ITERS = 10
VALID_CALC_LOSS_EVERY_ITERS = 10
# helpers functions
def exists(val):
return val is not None
# main functions
def create_dataloaders(
available_shards,
webdataset_base_url,
embeddings_url,
shard_width=6,
num_workers=4,
batch_size=32,
n_sample_images=6,
shuffle_train=True,
resample_train=False,
img_preproc = None,
index_width=4,
train_prop = 0.75,
val_prop = 0.15,
test_prop = 0.10,
**kwargs
):
"""
Randomly splits the available shards into train, val, and test sets and returns a dataloader for each
"""
assert train_prop + test_prop + val_prop == 1
num_train = round(train_prop*len(available_shards))
num_test = round(test_prop*len(available_shards))
num_val = len(available_shards) - num_train - num_test
assert num_train + num_test + num_val == len(available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(available_shards)}"
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(0))
# The shard number in the webdataset file names has a fixed width. We zero pad the shard numbers so they correspond to a filename.
train_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in train_split]
test_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in test_split]
val_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in val_split]
create_dataloader = lambda tar_urls, shuffle=False, resample=False, with_text=False, for_sampling=False: create_image_embedding_dataloader(
tar_url=tar_urls,
num_workers=num_workers,
batch_size=batch_size if not for_sampling else n_sample_images,
embeddings_url=embeddings_url,
index_width=index_width,
shuffle_num = None,
extra_keys= ["txt"] if with_text else [],
shuffle_shards = shuffle,
resample_shards = resample,
img_preproc=img_preproc,
handler=wds.handlers.warn_and_continue
)
train_dataloader = create_dataloader(train_urls, shuffle=shuffle_train, resample=resample_train)
train_sampling_dataloader = create_dataloader(train_urls, shuffle=False, for_sampling=True)
val_dataloader = create_dataloader(val_urls, shuffle=False, with_text=True)
test_dataloader = create_dataloader(test_urls, shuffle=False, with_text=True)
test_sampling_dataloader = create_dataloader(test_urls, shuffle=False, for_sampling=True)
return {
"train": train_dataloader,
"train_sampling": train_sampling_dataloader,
"val": val_dataloader,
"test": test_dataloader,
"test_sampling": test_sampling_dataloader
}
def create_decoder(device, decoder_config, unets_config):
"""Creates a sample decoder"""
unets = [Unet(**config.dict()) for config in unets_config]
decoder = Decoder(
unet=unets,
**decoder_config.dict()
)
decoder.to(device=device)
return decoder
def get_dataset_keys(dataloader):
"""
It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it.
"""
# If the dataloader is actually a WebLoader, we need to extract the real dataloader
if isinstance(dataloader, wds.WebLoader):
dataloader = dataloader.pipeline[0]
return dataloader.dataset.key_map
def get_example_data(dataloader, device, n=5):
"""
Samples the dataloader and returns a zipped list of examples
"""
images = []
embeddings = []
captions = []
dataset_keys = get_dataset_keys(dataloader)
has_caption = "txt" in dataset_keys
for data in dataloader:
if has_caption:
img, emb, txt = data
else:
img, emb = data
txt = [""] * emb.shape[0]
img = img.to(device=device, dtype=torch.float)
emb = emb.to(device=device, dtype=torch.float)
images.extend(list(img))
embeddings.extend(list(emb))
captions.extend(list(txt))
if len(images) >= n:
break
print("Generated {} examples".format(len(images)))
return list(zip(images[:n], embeddings[:n], captions[:n]))
def generate_samples(trainer, example_data, text_prepend=""):
"""
Takes example data and generates images from the embeddings
Returns three lists: real images, generated images, and captions
"""
real_images, embeddings, txts = zip(*example_data)
embeddings_tensor = torch.stack(embeddings)
samples = trainer.sample(embeddings_tensor)
generated_images = list(samples)
captions = [text_prepend + txt for txt in txts]
return real_images, generated_images, captions
def generate_grid_samples(trainer, examples, text_prepend=""):
"""
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
"""
real_images, generated_images, captions = generate_samples(trainer, examples, text_prepend)
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
return grid_images, captions
def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
"""
Computes evaluation metrics for the decoder
"""
metrics = {}
# Prepare the data
examples = get_example_data(dataloader, device, n_evaluation_samples)
real_images, generated_images, captions = generate_samples(trainer, examples)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
if exists(FID):
fid = FrechetInceptionDistance(**FID)
fid.to(device=device)
fid.update(int_real_images, real=True)
fid.update(int_generated_images, real=False)
metrics["FID"] = fid.compute().item()
if exists(IS):
inception = InceptionScore(**IS)
inception.to(device=device)
inception.update(int_real_images)
is_mean, is_std = inception.compute()
metrics["IS_mean"] = is_mean.item()
metrics["IS_std"] = is_std.item()
if exists(KID):
kernel_inception = KernelInceptionDistance(**KID)
kernel_inception.to(device=device)
kernel_inception.update(int_real_images, real=True)
kernel_inception.update(int_generated_images, real=False)
kid_mean, kid_std = kernel_inception.compute()
metrics["KID_mean"] = kid_mean.item()
metrics["KID_std"] = kid_std.item()
if exists(LPIPS):
# Convert from [0, 1] to [-1, 1]
renorm_real_images = real_images.mul(2).sub(1)
renorm_generated_images = generated_images.mul(2).sub(1)
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS)
lpips.to(device=device)
lpips.update(renorm_real_images, renorm_generated_images)
metrics["LPIPS"] = lpips.compute().item()
return metrics
def save_trainer(tracker, trainer, epoch, step, validation_losses, relative_paths):
"""
Logs the model with an appropriate method depending on the tracker
"""
if isinstance(relative_paths, str):
relative_paths = [relative_paths]
trainer_state_dict = {}
trainer_state_dict["trainer"] = trainer.state_dict()
trainer_state_dict['epoch'] = epoch
trainer_state_dict['step'] = step
trainer_state_dict['validation_losses'] = validation_losses
for relative_path in relative_paths:
tracker.save_state_dict(trainer_state_dict, relative_path)
def recall_trainer(tracker, trainer, recall_source=None, **load_config):
"""
Loads the model with an appropriate method depending on the tracker
"""
print(print_ribbon(f"Loading model from {recall_source}"))
state_dict = tracker.recall_state_dict(recall_source, **load_config)
trainer.load_state_dict(state_dict["trainer"])
print("Model loaded")
return state_dict["epoch"], state_dict["step"], state_dict["validation_losses"]
def train(
dataloaders,
decoder,
tracker,
inference_device,
load_config=None,
evaluate_config=None,
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
validation_samples = None,
epochs = 20,
n_sample_images = 5,
save_every_n_samples = 100000,
save_all=False,
save_latest=True,
save_best=True,
unet_training_mask=None,
**kwargs
):
"""
Trains a decoder on a dataset.
"""
trainer = DecoderTrainer( # TODO: Change the get_optimizer function so that it can take arbitrary named args so we can just put **kwargs as an argument here
decoder,
**kwargs
)
# Set up starting model and parameters based on a recalled state dict
start_step = 0
start_epoch = 0
validation_losses = []
if exists(load_config) and exists(load_config.source):
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
trainer.to(device=inference_device)
if not exists(unet_training_mask):
# Then the unet mask should be true for all unets in the decoder
unet_training_mask = [True] * trainer.num_unets
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
print(print_ribbon("Generating Example Data", repeat=40))
print("This can take a while to load the shard lists...")
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
send_to_device = lambda arr: [x.to(device=inference_device, dtype=torch.float) for x in arr]
step = start_step
for epoch in range(start_epoch, epochs):
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
timer = Timer()
sample = 0
last_sample = 0
last_snapshot = 0
losses = []
for i, (img, emb) in enumerate(dataloaders["train"]):
step += 1
sample += img.shape[0]
img, emb = send_to_device((img, emb))
trainer.train()
for unet in range(1, trainer.num_unets+1):
# Check if this is a unet we are training
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
continue
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
trainer.update(unet_number=unet)
losses.append(loss)
samples_per_sec = (sample - last_sample) / timer.elapsed()
timer.reset()
last_sample = sample
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
average_loss = sum(losses) / len(losses)
log_data = {
"Training loss": average_loss,
"Epoch": epoch,
"Sample": sample,
"Step": i,
"Samples per second": samples_per_sec
}
tracker.log(log_data, step=step, verbose=True)
losses = []
if last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
last_snapshot = sample
# We need to know where the model should be saved
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_all:
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
if exists(epoch_samples) and sample >= epoch_samples:
break
trainer.eval()
print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
with torch.no_grad():
sample = 0
average_loss = 0
timer = Timer()
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
sample += img.shape[0]
img, emb = send_to_device((img, emb))
for unet in range(1, len(decoder.unets)+1):
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
average_loss += loss
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
print(f"Epoch {epoch}/{epochs} - {sample / timer.elapsed():.2f} samples/sec")
print(f"Loss: {average_loss / (i+1)}")
print("")
if exists(validation_samples) and sample >= validation_samples:
break
average_loss /= i+1
log_data = {
"Validation loss": average_loss
}
tracker.log(log_data, step=step, verbose=True)
# Compute evaluation metrics
if exists(evaluate_config):
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config)
tracker.log(evaluation, step=step, verbose=True)
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step)
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
# Get the same paths
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
save_paths.append("best.pth")
validation_losses.append(average_loss)
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
"""
Creates a tracker of the specified type and initializes special features based on the full config
"""
tracker_config = config.tracker
init_config = {}
if exists(tracker_config.init_config):
init_config["config"] = tracker_config.init_config
if tracker_type == "console":
tracker = ConsoleTracker(**init_config)
elif tracker_type == "wandb":
# We need to initialize the resume state here
load_config = config.load
if load_config.source == "wandb" and load_config.resume:
# Then we are resuming the run load_config["run_path"]
run_id = load_config.run_path.split("/")[-1]
init_config["id"] = run_id
init_config["resume"] = "must"
init_config["entity"] = tracker_config.wandb_entity
init_config["project"] = tracker_config.wandb_project
tracker = WandbTracker(data_path)
tracker.init(**init_config)
else:
raise ValueError(f"Tracker type {tracker_type} not supported by decoder trainer")
return tracker
def initialize_training(config):
# Create the save path
if "cuda" in config.train.device:
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device(config.train.device)
torch.cuda.set_device(device)
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
dataloaders = create_dataloaders (
available_shards=all_shards,
img_preproc = config.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict()
)
decoder = create_decoder(device, config.decoder, config.unets)
num_parameters = sum(p.numel() for p in decoder.parameters())
print(print_ribbon("Loaded Config", repeat=40))
print(f"Number of parameters: {num_parameters}")
tracker = create_tracker(config, **config.tracker.dict())
train(dataloaders, decoder,
tracker=tracker,
inference_device=device,
load_config=config.load,
evaluate_config=config.evaluate,
**config.train.dict(),
)
# Create a simple click command line interface to load the config and start the training
@click.command()
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
def main(config_file):
print("Recalling config from {}".format(config_file))
config = TrainDecoderConfig.from_json_path(config_file)
initialize_training(config)
if __name__ == "__main__":
main()

365
train_diffusion_prior.py Normal file
View File

@@ -0,0 +1,365 @@
from pathlib import Path
import click
import math
import numpy as np
import torch
import clip
from torch import nn
from dalle2_pytorch.dataloaders import make_splits
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer
from embedding_reader import EmbeddingReader
from tqdm import tqdm
# constants
REPORT_METRICS_EVERY = 250 # for cosine similarity and other metric reporting during training
tracker = WandbTracker()
# helpers functions
def exists(val):
val is not None
# functions
def eval_model(model, dataloader, text_conditioned, loss_type, phase="Validation"):
model.eval()
with torch.no_grad():
total_loss = 0.
total_samples = 0.
for image_embeddings, text_data in tqdm(dataloader):
batches = image_embeddings.shape[0]
input_args = dict(image_embed=image_embeddings)
if text_conditioned:
input_args = dict(**input_args, text = text_data)
else:
input_args = dict(**input_args, text_embed=text_data)
loss = model(**input_args)
total_loss += loss * batches
total_samples += batches
avg_loss = (total_loss / total_samples)
tracker.log({f'{phase} {loss_type}': avg_loss})
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned):
diffusion_prior.eval()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
for test_image_embeddings, text_data in tqdm(dataloader):
# we are text conditioned, we produce an embedding from the tokenized text
if text_conditioned:
text_embedding, text_encodings, text_mask = diffusion_prior.clip.embed_text(
text_data)
text_cond = dict(text_embed=text_embedding,
text_encodings=text_encodings, mask=text_mask)
else:
text_embedding = text_data
text_cond = dict(text_embed=text_embedding)
# make a copy of the text embeddings for shuffling
text_embed_shuffled = text_embedding.clone()
# roll the text to simulate "unrelated" captions
rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
if text_conditioned:
text_encodings_shuffled = text_encodings[rolled_idx]
text_mask_shuffled = text_mask[rolled_idx]
else:
text_encodings_shuffled = None
text_mask_shuffled = None
text_cond_shuffled = dict(text_embed=text_embed_shuffled,
text_encodings=text_encodings_shuffled, mask=text_mask_shuffled)
# prepare the text embedding
text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True)
# prepare image embeddings
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
# predict on the unshuffled text embeddings
predicted_image_embeddings = diffusion_prior.p_sample_loop(
test_image_embeddings.shape, text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
# predict on the shuffled embeddings
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
test_image_embeddings.shape, text_cond_shuffled)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
# calculate similarities
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
@click.command()
@click.option("--wandb-entity", default="laion")
@click.option("--wandb-project", default="diffusion-prior")
@click.option("--wandb-dataset", default="LAION-5B")
@click.option("--wandb-arch", default="DiffusionPrior")
@click.option("--image-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/")
@click.option("--text-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/")
@click.option("--meta-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/")
@click.option("--learning-rate", default=1.1e-4)
@click.option("--weight-decay", default=6.02e-2)
@click.option("--dropout", default=5e-2)
@click.option("--max-grad-norm", default=0.5)
@click.option("--num-data-points", default=250e6)
@click.option("--batch-size", default=320)
@click.option("--num-epochs", default=5)
@click.option("--image-embed-dim", default=768)
@click.option("--train-percent", default=0.9)
@click.option("--val-percent", default=1e-7)
@click.option("--test-percent", default=0.0999999)
@click.option("--dpn-depth", default=12)
@click.option("--dpn-dim-head", default=64)
@click.option("--dpn-heads", default=12)
@click.option("--dp-condition-on-text-encodings", default=True)
@click.option("--dp-timesteps", default=1000)
@click.option("--dp-normformer", default=True)
@click.option("--dp-cond-drop-prob", default=0.1)
@click.option("--dp-loss-type", default="l2")
@click.option("--clip", default="ViT-L/14")
@click.option("--amp", default=False)
@click.option("--save-interval", default=120)
@click.option("--save-path", default="./diffusion_prior_checkpoints")
@click.option("--pretrained-model-path", default=None)
@click.option("--gpu-device", default=0)
def train(
wandb_entity,
wandb_project,
wandb_dataset,
wandb_arch,
image_embed_url,
text_embed_url,
meta_url,
learning_rate,
weight_decay,
dropout,
max_grad_norm,
num_data_points,
batch_size,
num_epochs,
image_embed_dim,
train_percent,
val_percent,
test_percent,
dpn_depth,
dpn_dim_head,
dpn_heads,
dp_condition_on_text_encodings,
dp_timesteps,
dp_normformer,
dp_cond_drop_prob,
dp_loss_type,
clip,
amp,
save_interval,
save_path,
pretrained_model_path,
gpu_device
):
config = {
"learning_rate": learning_rate,
"architecture": wandb_arch,
"dataset": wandb_dataset,
"weight_decay": weight_decay,
"max_gradient_clipping_norm": max_grad_norm,
"batch_size": batch_size,
"epochs": num_epochs,
"diffusion_prior_network": {
"depth": dpn_depth,
"dim_head": dpn_dim_head,
"heads": dpn_heads,
"normformer": dp_normformer
},
"diffusion_prior": {
"condition_on_text_encodings": dp_condition_on_text_encodings,
"timesteps": dp_timesteps,
"cond_drop_prob": dp_cond_drop_prob,
"loss_type": dp_loss_type,
"clip": clip
}
}
# Check if DPRIOR_PATH exists(saved model path)
DPRIOR_PATH = pretrained_model_path
RESUME = exists(DPRIOR_PATH)
if not RESUME:
tracker.init(
entity = wandb_entity,
project = wandb_project,
config = config
)
# Obtain the utilized device.
has_cuda = torch.cuda.is_available()
if has_cuda:
device = torch.device(f"cuda:{gpu_device}")
torch.cuda.set_device(device)
# Training loop
# diffusion prior network
prior_network = DiffusionPriorNetwork(
dim = image_embed_dim,
depth = dpn_depth,
dim_head = dpn_dim_head,
heads = dpn_heads,
attn_dropout = dropout,
ff_dropout = dropout,
normformer = dp_normformer
)
# Load clip model if text-conditioning
if dp_condition_on_text_encodings:
clip_adapter = OpenAIClipAdapter(clip)
else:
clip_adapter = None
# diffusion prior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip_adapter,
image_embed_dim = image_embed_dim,
timesteps = dp_timesteps,
cond_drop_prob = dp_cond_drop_prob,
loss_type = dp_loss_type,
condition_on_text_encodings = dp_condition_on_text_encodings
)
# Load pre-trained model from DPRIOR_PATH
if RESUME:
diffusion_prior, loaded_obj = load_diffusion_model(DPRIOR_PATH, device)
tracker.init(entity = wandb_entity, project = wandb_project, config = config)
# diffusion prior trainer
trainer = DiffusionPriorTrainer(
diffusion_prior = diffusion_prior,
lr = learning_rate,
wd = weight_decay,
max_grad_norm = max_grad_norm,
amp = amp,
).to(device)
# load optimizer and scaler
if RESUME:
trainer.optimizer.load_state_dict(loaded_obj['optimizer'])
trainer.scaler.load_state_dict(loaded_obj['scaler'])
# Create save_path if it doesn't exist
Path(save_path).mkdir(exist_ok = True, parents = True)
# Utilize wrapper to abstract away loader logic
print_ribbon("Downloading Embeddings")
loader_args = dict(text_conditioned=dp_condition_on_text_encodings, batch_size=batch_size, num_data_points=num_data_points,
train_split=train_percent, eval_split=val_percent, device=device, img_url=image_embed_url)
if dp_condition_on_text_encodings:
loader_args = dict(**loader_args, meta_url=meta_url)
else:
loader_args = dict(**loader_args, txt_url=text_embed_url)
train_loader, eval_loader, test_loader = make_splits(**loader_args)
### Training code ###
step = 1
timer = Timer()
epochs = num_epochs
for _ in range(epochs):
for image, text in tqdm(train_loader):
diffusion_prior.train()
input_args = dict(image_embed=image)
if dp_condition_on_text_encodings:
input_args = dict(**input_args, text = text)
else:
input_args = dict(**input_args, text_embed=text)
loss = trainer(**input_args)
# Samples per second
samples_per_sec = batch_size * step / timer.elapsed()
# Save checkpoint every save_interval minutes
if(int(timer.elapsed()) >= 60 * save_interval):
timer.reset()
save_diffusion_model(
save_path,
diffusion_prior,
trainer.optimizer,
trainer.scaler,
config,
image_embed_dim)
# Log to wandb
tracker.log({"Training loss": loss,
"Steps": step,
"Samples per second": samples_per_sec})
# Log cosineSim(text_embed,predicted_image_embed) - cosineSim(text_embed,image_embed)
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings)
### Evaluate model(validation run) ###
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation")
step += 1
trainer.update()
### Test run ###
eval_model(diffusion_prior, test_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Test")
if __name__ == "__main__":
train()