mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
27 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
72bf159331 | ||
|
|
e5e47cfecb | ||
|
|
fa533962bd | ||
|
|
276abf337b | ||
|
|
ae42d03006 | ||
|
|
4d346e98d9 | ||
|
|
2b1fd1ad2e | ||
|
|
82a2ef37d9 | ||
|
|
5c397c9d66 | ||
|
|
0f4edff214 | ||
|
|
501a8c7c46 | ||
|
|
4e49373fc5 | ||
|
|
49de72040c | ||
|
|
271a376eaf | ||
|
|
e527002472 | ||
|
|
c12e067178 | ||
|
|
c6629c431a | ||
|
|
7ac2fc79f2 | ||
|
|
a1ef023193 | ||
|
|
d49eca62fa | ||
|
|
8aab69b91e | ||
|
|
b432df2f7b | ||
|
|
ebaa0d28c2 | ||
|
|
8b0d459b25 | ||
|
|
0064661729 | ||
|
|
b895f52843 | ||
|
|
80497e9839 |
26
README.md
26
README.md
@@ -12,7 +12,7 @@ This model is SOTA for text-to-image for now.
|
||||
|
||||
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication with the <a href="https://laion.ai/">LAION</a> community | <a href="https://www.youtube.com/watch?v=AIOE1l1W0Tw">Yannic Interview</a>
|
||||
|
||||
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
|
||||
As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lucidrains/imagen-pytorch">here</a>. Jax versions as well as text-to-video project will be shifted towards the Imagen architecture, as it is way simpler.
|
||||
|
||||
## Status
|
||||
|
||||
@@ -24,6 +24,11 @@ There was enough interest for a <a href="https://github.com/lucidrains/dalle2-ja
|
||||
|
||||
*ongoing at 21k steps*
|
||||
|
||||
## Pre-Trained Models
|
||||
- LAION is training prior models. Checkpoints are available on <a href="https://huggingface.co/zenglishuci/conditioned-prior">🤗huggingface</a> and the training statistics are available on <a href="https://wandb.ai/nousr_laion/conditioned-prior/reports/LAION-DALLE2-PyTorch-Prior--VmlldzoyMDI2OTIx">🐝WANDB</a>.
|
||||
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/jkrtg0so?workspace=user-veldrovive">In-progress test run</a> 🚧
|
||||
- DALL-E 2 🚧
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
@@ -1034,6 +1039,18 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
|
||||
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
|
||||
|
||||
## Appreciation
|
||||
|
||||
This library would not have gotten to this working state without the help of
|
||||
|
||||
- <a href="https://github.com/nousr">Zion</a> and <a href="https://github.com/krish240574">Kumar</a> for the diffusion training script
|
||||
- <a href="https://github.com/Veldrovive">Aidan</a> for the decoder training script and dataloaders
|
||||
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
|
||||
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
|
||||
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
||||
|
||||
... and many others. Thank you! 🙏
|
||||
|
||||
## Todo
|
||||
|
||||
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
||||
@@ -1064,6 +1081,10 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
|
||||
- [x] cross embed layers for downsampling, as an option
|
||||
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
|
||||
- [x] use pydantic for config drive training
|
||||
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [x] allow for creation of diffusion prior model off pydantic config classes - consider the same for tracker configs
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||
- [ ] train on a toy task, offer in colab
|
||||
@@ -1073,12 +1094,9 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
|
||||
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
|
||||
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -4,11 +4,12 @@ For more complex configuration, we provide the option of using a configuration f
|
||||
|
||||
### Decoder Trainer
|
||||
|
||||
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.json.example).
|
||||
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.example.json).
|
||||
|
||||
**<ins>Unets</ins>:**
|
||||
**<ins>Unet</ins>:**
|
||||
|
||||
This is a single unet config, which belongs as an array nested under the decoder config as a list of `unets`
|
||||
|
||||
Each member of this array defines a single unet that will be added to the decoder.
|
||||
| Option | Required | Default | Description |
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `dim` | Yes | N/A | The starting channels of the unet. |
|
||||
@@ -22,6 +23,7 @@ Any parameter from the `Unet` constructor can also be given here.
|
||||
Defines the configuration options for the decoder model. The unets defined above will automatically be inserted.
|
||||
| Option | Required | Default | Description |
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `unets` | Yes | N/A | A list of unets, using the configuration above |
|
||||
| `image_sizes` | Yes | N/A | The resolution of the image after each upsampling step. The length of this array should be the number of unets defined. |
|
||||
| `image_size` | Yes | N/A | Not used. Can be any number. |
|
||||
| `timesteps` | No | `1000` | The number of diffusion timesteps used for generation. |
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
"""
|
||||
Defines the default values for the decoder config
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
class ConfigField(Enum):
|
||||
REQUIRED = 0 # This had more options. It's a bit unnecessary now, but I can't think of a better way to do it.
|
||||
|
||||
default_config = {
|
||||
"unets": ConfigField.REQUIRED,
|
||||
"decoder": {
|
||||
"image_sizes": ConfigField.REQUIRED, # The side lengths of the upsampled image at the end of each unet
|
||||
"image_size": ConfigField.REQUIRED, # Usually the same as image_sizes[-1] I think
|
||||
"channels": 3,
|
||||
"timesteps": 1000,
|
||||
"loss_type": "l2",
|
||||
"beta_schedule": "cosine",
|
||||
"learned_variance": True
|
||||
},
|
||||
"data": {
|
||||
"webdataset_base_url": ConfigField.REQUIRED, # Path to a webdataset with jpg images
|
||||
"embeddings_url": ConfigField.REQUIRED, # Path to .npy files with embeddings
|
||||
"num_workers": 4,
|
||||
"batch_size": 64,
|
||||
"start_shard": 0,
|
||||
"end_shard": 9999999,
|
||||
"shard_width": 6,
|
||||
"index_width": 4,
|
||||
"splits": {
|
||||
"train": 0.75,
|
||||
"val": 0.15,
|
||||
"test": 0.1
|
||||
},
|
||||
"shuffle_train": True,
|
||||
"resample_train": False,
|
||||
"preprocessing": {
|
||||
"ToTensor": True
|
||||
}
|
||||
},
|
||||
"train": {
|
||||
"epochs": 20,
|
||||
"lr": 1e-4,
|
||||
"wd": 0.01,
|
||||
"max_grad_norm": 0.5,
|
||||
"save_every_n_samples": 100000,
|
||||
"n_sample_images": 6, # The number of example images to produce when sampling the train and test dataset
|
||||
"device": "cuda:0",
|
||||
"epoch_samples": None, # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
"validation_samples": None, # Same as above but for validation.
|
||||
"use_ema": True,
|
||||
"ema_beta": 0.99,
|
||||
"amp": False,
|
||||
"save_all": False, # Whether to preserve all checkpoints
|
||||
"save_latest": True, # Whether to always save the latest checkpoint
|
||||
"save_best": True, # Whether to save the best checkpoint
|
||||
"unet_training_mask": None # If None, use all unets
|
||||
},
|
||||
"evaluate": {
|
||||
"n_evalation_samples": 1000,
|
||||
"FID": None,
|
||||
"IS": None,
|
||||
"KID": None,
|
||||
"LPIPS": None
|
||||
},
|
||||
"tracker": {
|
||||
"tracker_type": "console", # Decoder currently supports console and wandb
|
||||
"data_path": "./models", # The path where files will be saved locally
|
||||
|
||||
"wandb_entity": "", # Only needs to be set if tracker_type is wandb
|
||||
"wandb_project": "",
|
||||
|
||||
"verbose": False # Whether to print console logging for non-console trackers
|
||||
},
|
||||
"load": {
|
||||
"source": None, # Supports file and wandb
|
||||
|
||||
"run_path": "", # Used only if source is wandb
|
||||
"file_path": "", # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
|
||||
|
||||
"resume": False # If using wandb, whether to resume the run
|
||||
}
|
||||
}
|
||||
@@ -1,18 +1,17 @@
|
||||
{
|
||||
"unets": [
|
||||
{
|
||||
"dim": 128,
|
||||
"image_embed_dim": 768,
|
||||
"cond_dim": 64,
|
||||
"channels": 3,
|
||||
"dim_mults": [1, 2, 4, 8],
|
||||
"attn_dim_head": 32,
|
||||
"attn_heads": 16
|
||||
}
|
||||
],
|
||||
"decoder": {
|
||||
"unets": [
|
||||
{
|
||||
"dim": 128,
|
||||
"image_embed_dim": 768,
|
||||
"cond_dim": 64,
|
||||
"channels": 3,
|
||||
"dim_mults": [1, 2, 4, 8],
|
||||
"attn_dim_head": 32,
|
||||
"attn_heads": 16
|
||||
}
|
||||
],
|
||||
"image_sizes": [64],
|
||||
"image_size": [64],
|
||||
"channels": 3,
|
||||
"timesteps": 1000,
|
||||
"loss_type": "l2",
|
||||
@@ -63,7 +62,7 @@
|
||||
"unet_training_mask": [true]
|
||||
},
|
||||
"evaluate": {
|
||||
"n_evalation_samples": 1000,
|
||||
"n_evaluation_samples": 1000,
|
||||
"FID": {
|
||||
"feature": 64
|
||||
},
|
||||
@@ -59,6 +59,9 @@ def default(val, d):
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
def cast_tuple(val, length = 1):
|
||||
if isinstance(val, list):
|
||||
val = tuple(val)
|
||||
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
def module_device(module):
|
||||
@@ -887,6 +890,8 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
)
|
||||
|
||||
if exists(clip):
|
||||
assert image_channels == clip.image_channels, f'channels of image ({image_channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip, **clip_adapter_overrides)
|
||||
elif isinstance(clip, CoCa):
|
||||
@@ -1707,12 +1712,19 @@ class Decoder(BaseGaussianDiffusion):
|
||||
)
|
||||
|
||||
self.unconditional = unconditional
|
||||
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
|
||||
assert self.unconditional or (exists(clip) ^ exists(image_size)), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
|
||||
# text conditioning
|
||||
|
||||
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
self.condition_on_text_encodings = condition_on_text_encodings
|
||||
|
||||
# clip
|
||||
|
||||
self.clip = None
|
||||
if exists(clip):
|
||||
assert not unconditional, 'clip must not be given if doing unconditional image training'
|
||||
assert channels == clip.image_channels, f'channels of image ({channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip, **clip_adapter_overrides)
|
||||
elif isinstance(clip, CoCa):
|
||||
@@ -1722,13 +1734,20 @@ class Decoder(BaseGaussianDiffusion):
|
||||
assert isinstance(clip, BaseClipAdapter)
|
||||
|
||||
self.clip = clip
|
||||
self.clip_image_size = clip.image_size
|
||||
self.channels = clip.image_channels
|
||||
else:
|
||||
self.clip_image_size = image_size
|
||||
self.channels = channels
|
||||
|
||||
self.condition_on_text_encodings = condition_on_text_encodings
|
||||
# determine image size, with image_size and image_sizes taking precedence
|
||||
|
||||
if exists(image_size) or exists(image_sizes):
|
||||
assert exists(image_size) ^ exists(image_sizes), 'only one of image_size or image_sizes must be given'
|
||||
image_size = default(image_size, lambda: image_sizes[-1])
|
||||
elif exists(clip):
|
||||
image_size = clip.image_size
|
||||
else:
|
||||
raise Error('either image_size, image_sizes, or clip must be given to decoder')
|
||||
|
||||
# channels
|
||||
|
||||
self.channels = channels
|
||||
|
||||
# automatically take care of ensuring that first unet is unconditional
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
@@ -1770,7 +1789,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
# unet image sizes
|
||||
|
||||
image_sizes = default(image_sizes, (self.clip_image_size,))
|
||||
image_sizes = default(image_sizes, (image_size,))
|
||||
image_sizes = tuple(sorted(set(image_sizes)))
|
||||
|
||||
assert len(self.unets) == len(image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {image_sizes}'
|
||||
@@ -1808,6 +1827,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip_x_start = clip_x_start
|
||||
|
||||
# normalize and unnormalize image functions
|
||||
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
||||
|
||||
|
||||
189
dalle2_pytorch/train_configs.py
Normal file
189
dalle2_pytorch/train_configs.py
Normal file
@@ -0,0 +1,189 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
|
||||
from dalle2_pytorch.dalle2_pytorch import Unet, Decoder, DiffusionPrior, DiffusionPriorNetwork
|
||||
|
||||
# helper functions
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def ListOrTuple(inner_type):
|
||||
return Union[List[inner_type], Tuple[inner_type]]
|
||||
|
||||
# pydantic classes
|
||||
|
||||
class DiffusionPriorNetworkConfig(BaseModel):
|
||||
dim: int
|
||||
depth: int
|
||||
num_timesteps: int = None
|
||||
num_time_embeds: int = 1
|
||||
num_image_embeds: int = 1
|
||||
num_text_embeds: int = 1
|
||||
dim_head: int = 64
|
||||
heads: int = 8
|
||||
ff_mult: int = 4
|
||||
norm_out: bool = True
|
||||
attn_dropout: float = 0.
|
||||
ff_dropout: float = 0.
|
||||
final_proj: bool = True
|
||||
normformer: bool = False
|
||||
rotary_emb: bool = True
|
||||
|
||||
class DiffusionPriorConfig(BaseModel):
|
||||
# only clip-less diffusion prior config for now
|
||||
net: DiffusionPriorNetworkConfig
|
||||
image_embed_dim: int
|
||||
image_size: int
|
||||
image_channels: int = 3
|
||||
timesteps: int = 1000
|
||||
cond_drop_prob: float = 0.
|
||||
loss_type: str = 'l2'
|
||||
predict_x_start: bool = True
|
||||
beta_schedule: str = 'cosine'
|
||||
|
||||
def create(self):
|
||||
kwargs = self.dict()
|
||||
diffusion_prior_network = DiffusionPriorNetwork(**kwargs.pop('net'))
|
||||
return DiffusionPrior(net = diffusion_prior_network, **kwargs)
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
image_embed_dim: int = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: str = 'cosine'
|
||||
learned_variance: bool = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
|
||||
def create(self):
|
||||
decoder_kwargs = self.dict()
|
||||
unet_configs = decoder_kwargs.pop('unets')
|
||||
unets = [Unet(**config) for config in unet_configs]
|
||||
return Decoder(unets, **decoder_kwargs)
|
||||
|
||||
@validator('image_sizes')
|
||||
def check_image_sizes(cls, image_sizes, values):
|
||||
if exists(values.get('image_size')) ^ exists(image_sizes):
|
||||
return image_sizes
|
||||
raise ValueError('either image_size or image_sizes is required, but not both')
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
class TrainSplitConfig(BaseModel):
|
||||
train: float = 0.75
|
||||
val: float = 0.15
|
||||
test: float = 0.1
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, fields):
|
||||
if sum([*fields.values()]) != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0')
|
||||
return fields
|
||||
|
||||
class DecoderDataConfig(BaseModel):
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
embeddings_url: str # path to .npy files with embeddings
|
||||
num_workers: int = 4
|
||||
batch_size: int = 64
|
||||
start_shard: int = 0
|
||||
end_shard: int = 9999999
|
||||
shard_width: int = 6
|
||||
index_width: int = 4
|
||||
splits: TrainSplitConfig
|
||||
shuffle_train: bool = True
|
||||
resample_train: bool = False
|
||||
preprocessing: Dict[str, Any] = {'ToTensor': True}
|
||||
|
||||
@property
|
||||
def img_preproc(self):
|
||||
def _get_transformation(transformation_name, **kwargs):
|
||||
if transformation_name == "RandomResizedCrop":
|
||||
return T.RandomResizedCrop(**kwargs)
|
||||
elif transformation_name == "RandomHorizontalFlip":
|
||||
return T.RandomHorizontalFlip()
|
||||
elif transformation_name == "ToTensor":
|
||||
return T.ToTensor()
|
||||
|
||||
transforms = []
|
||||
for transform_name, transform_kwargs_or_bool in self.preprocessing.items():
|
||||
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
|
||||
transforms.append(_get_transformation(transform_name, **transform_kwargs))
|
||||
return T.Compose(transforms)
|
||||
|
||||
class DecoderTrainConfig(BaseModel):
|
||||
epochs: int = 20
|
||||
lr: float = 1e-4
|
||||
wd: float = 0.01
|
||||
max_grad_norm: float = 0.5
|
||||
save_every_n_samples: int = 100000
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
device: str = 'cuda:0'
|
||||
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: int = None # Same as above but for validation.
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.99
|
||||
amp: bool = False
|
||||
save_all: bool = False # Whether to preserve all checkpoints
|
||||
save_latest: bool = True # Whether to always save the latest checkpoint
|
||||
save_best: bool = True # Whether to save the best checkpoint
|
||||
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
FID: Dict[str, Any] = None
|
||||
IS: Dict[str, Any] = None
|
||||
KID: Dict[str, Any] = None
|
||||
LPIPS: Dict[str, Any] = None
|
||||
|
||||
class TrackerConfig(BaseModel):
|
||||
tracker_type: str = 'console' # Decoder currently supports console and wandb
|
||||
data_path: str = './models' # The path where files will be saved locally
|
||||
init_config: Dict[str, Any] = None
|
||||
wandb_entity: str = '' # Only needs to be set if tracker_type is wandb
|
||||
wandb_project: str = ''
|
||||
verbose: bool = False # Whether to print console logging for non-console trackers
|
||||
|
||||
class DecoderLoadConfig(BaseModel):
|
||||
source: str = None # Supports file and wandb
|
||||
run_path: str = '' # Used only if source is wandb
|
||||
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
|
||||
resume: bool = False # If using wandb, whether to resume the run
|
||||
|
||||
class TrainDecoderConfig(BaseModel):
|
||||
decoder: DecoderConfig
|
||||
data: DecoderDataConfig
|
||||
train: DecoderTrainConfig
|
||||
evaluate: DecoderEvaluateConfig
|
||||
tracker: TrackerConfig
|
||||
load: DecoderLoadConfig
|
||||
|
||||
@classmethod
|
||||
def from_json_path(cls, json_path):
|
||||
with open(json_path) as f:
|
||||
config = json.load(f)
|
||||
return cls(**config)
|
||||
@@ -1,5 +1,6 @@
|
||||
import time
|
||||
import copy
|
||||
from pathlib import Path
|
||||
from math import ceil
|
||||
from functools import partial, wraps
|
||||
from collections.abc import Iterable
|
||||
@@ -55,6 +56,10 @@ def num_to_groups(num, divisor):
|
||||
arr.append(remainder)
|
||||
return arr
|
||||
|
||||
def get_pkg_version():
|
||||
from pkg_resources import get_distribution
|
||||
return get_distribution('dalle2_pytorch').version
|
||||
|
||||
# decorators
|
||||
|
||||
def cast_torch_tensor(fn):
|
||||
@@ -128,12 +133,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
|
||||
chunk_size_frac = chunk_size / batch_size
|
||||
yield chunk_size_frac, (chunked_args, chunked_kwargs)
|
||||
|
||||
# print helpers
|
||||
|
||||
def print_ribbon(s, symbol = '=', repeat = 40):
|
||||
flank = symbol * repeat
|
||||
return f'{flank} {s} {flank}'
|
||||
|
||||
# saving and loading functions
|
||||
|
||||
# for diffusion prior
|
||||
@@ -191,7 +190,7 @@ class EMA(nn.Module):
|
||||
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([False]))
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
self.register_buffer('step', torch.tensor([0]))
|
||||
|
||||
def restore_ema_model_device(self):
|
||||
device = self.initted.device
|
||||
@@ -287,7 +286,50 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.max_grad_norm = max_grad_norm
|
||||
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
self.register_buffer('step', torch.tensor([0]))
|
||||
|
||||
def save(self, path, overwrite = True, **kwargs):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.diffusion_prior.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
|
||||
|
||||
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
|
||||
if only_model:
|
||||
return loaded_obj
|
||||
|
||||
self.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
|
||||
return loaded_obj
|
||||
|
||||
def update(self):
|
||||
if exists(self.max_grad_norm):
|
||||
@@ -410,6 +452,60 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
|
||||
def save(self, path, overwrite = True, **kwargs):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
save_obj = dict(
|
||||
model = self.decoder.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
|
||||
for ind in range(0, self.num_unets):
|
||||
scaler_key = f'scaler{ind}'
|
||||
optimizer_key = f'scaler{ind}'
|
||||
scaler = getattr(self, scaler_key)
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
|
||||
|
||||
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
|
||||
if only_model:
|
||||
return loaded_obj
|
||||
|
||||
for ind in range(0, self.num_unets):
|
||||
scaler_key = f'scaler{ind}'
|
||||
optimizer_key = f'scaler{ind}'
|
||||
scaler = getattr(self, scaler_key)
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
|
||||
scaler.load_state_dict(loaded_obj[scaler_key])
|
||||
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
|
||||
return loaded_obj
|
||||
|
||||
@property
|
||||
def unets(self):
|
||||
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import time
|
||||
|
||||
# time helpers
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
@@ -9,3 +11,9 @@ class Timer:
|
||||
|
||||
def elapsed(self):
|
||||
return time.time() - self.last_time
|
||||
|
||||
# print helpers
|
||||
|
||||
def print_ribbon(s, symbol = '=', repeat = 40):
|
||||
flank = symbol * repeat
|
||||
return f'{flank} {s} {flank}'
|
||||
|
||||
3
setup.py
3
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.3.6',
|
||||
version = '0.4.14',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
@@ -32,6 +32,7 @@ setup(
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'resize-right>=0.0.2',
|
||||
'rotary-embedding-torch',
|
||||
'torch>=1.10',
|
||||
|
||||
194
train_decoder.py
194
train_decoder.py
@@ -1,13 +1,11 @@
|
||||
from dalle2_pytorch import Unet, Decoder
|
||||
from dalle2_pytorch.trainer import DecoderTrainer, print_ribbon
|
||||
from dalle2_pytorch.trainer import DecoderTrainer
|
||||
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
|
||||
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
|
||||
from dalle2_pytorch.utils import Timer
|
||||
from dalle2_pytorch.train_configs import TrainDecoderConfig
|
||||
from dalle2_pytorch.utils import Timer, print_ribbon
|
||||
|
||||
from configs.decoder_defaults import default_config, ConfigField
|
||||
import json
|
||||
import torchvision
|
||||
from torchvision import transforms as T
|
||||
import torch
|
||||
from torchmetrics.image.fid import FrechetInceptionDistance
|
||||
from torchmetrics.image.inception import InceptionScore
|
||||
@@ -16,6 +14,17 @@ from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
|
||||
import webdataset as wds
|
||||
import click
|
||||
|
||||
# constants
|
||||
|
||||
TRAIN_CALC_LOSS_EVERY_ITERS = 10
|
||||
VALID_CALC_LOSS_EVERY_ITERS = 10
|
||||
|
||||
# helpers functions
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
# main functions
|
||||
|
||||
def create_dataloaders(
|
||||
available_shards,
|
||||
@@ -76,23 +85,6 @@ def create_dataloaders(
|
||||
"test_sampling": test_sampling_dataloader
|
||||
}
|
||||
|
||||
|
||||
def create_decoder(device, decoder_config, unets_config):
|
||||
"""Creates a sample decoder"""
|
||||
unets = []
|
||||
for i in range(0, len(unets_config)):
|
||||
unets.append(Unet(
|
||||
**unets_config[i]
|
||||
))
|
||||
|
||||
decoder = Decoder(
|
||||
unet=tuple(unets), # Must be tuple because of cast_tuple
|
||||
**decoder_config
|
||||
)
|
||||
decoder.to(device=device)
|
||||
|
||||
return decoder
|
||||
|
||||
def get_dataset_keys(dataloader):
|
||||
"""
|
||||
It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it.
|
||||
@@ -147,33 +139,33 @@ def generate_grid_samples(trainer, examples, text_prepend=""):
|
||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||
return grid_images, captions
|
||||
|
||||
def evaluate_trainer(trainer, dataloader, device, n_evalation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
"""
|
||||
Computes evaluation metrics for the decoder
|
||||
"""
|
||||
metrics = {}
|
||||
# Prepare the data
|
||||
examples = get_example_data(dataloader, device, n_evalation_samples)
|
||||
examples = get_example_data(dataloader, device, n_evaluation_samples)
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples)
|
||||
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
|
||||
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
|
||||
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
|
||||
int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
|
||||
int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
|
||||
if FID is not None:
|
||||
if exists(FID):
|
||||
fid = FrechetInceptionDistance(**FID)
|
||||
fid.to(device=device)
|
||||
fid.update(int_real_images, real=True)
|
||||
fid.update(int_generated_images, real=False)
|
||||
metrics["FID"] = fid.compute().item()
|
||||
if IS is not None:
|
||||
if exists(IS):
|
||||
inception = InceptionScore(**IS)
|
||||
inception.to(device=device)
|
||||
inception.update(int_real_images)
|
||||
is_mean, is_std = inception.compute()
|
||||
metrics["IS_mean"] = is_mean.item()
|
||||
metrics["IS_std"] = is_std.item()
|
||||
if KID is not None:
|
||||
if exists(KID):
|
||||
kernel_inception = KernelInceptionDistance(**KID)
|
||||
kernel_inception.to(device=device)
|
||||
kernel_inception.update(int_real_images, real=True)
|
||||
@@ -181,7 +173,7 @@ def evaluate_trainer(trainer, dataloader, device, n_evalation_samples=1000, FID=
|
||||
kid_mean, kid_std = kernel_inception.compute()
|
||||
metrics["KID_mean"] = kid_mean.item()
|
||||
metrics["KID_std"] = kid_std.item()
|
||||
if LPIPS is not None:
|
||||
if exists(LPIPS):
|
||||
# Convert from [0, 1] to [-1, 1]
|
||||
renorm_real_images = real_images.mul(2).sub(1)
|
||||
renorm_generated_images = generated_images.mul(2).sub(1)
|
||||
@@ -245,11 +237,11 @@ def train(
|
||||
start_epoch = 0
|
||||
validation_losses = []
|
||||
|
||||
if load_config is not None and load_config["source"] is not None:
|
||||
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config["source"], **load_config)
|
||||
if exists(load_config) and exists(load_config.source):
|
||||
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
|
||||
trainer.to(device=inference_device)
|
||||
|
||||
if unet_training_mask is None:
|
||||
if not exists(unet_training_mask):
|
||||
# Then the unet mask should be true for all unets in the decoder
|
||||
unet_training_mask = [True] * trainer.num_unets
|
||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
@@ -264,7 +256,6 @@ def train(
|
||||
|
||||
for epoch in range(start_epoch, epochs):
|
||||
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
|
||||
trainer.train()
|
||||
|
||||
timer = Timer()
|
||||
|
||||
@@ -273,24 +264,28 @@ def train(
|
||||
last_snapshot = 0
|
||||
|
||||
losses = []
|
||||
|
||||
for i, (img, emb) in enumerate(dataloaders["train"]):
|
||||
step += 1
|
||||
sample += img.shape[0]
|
||||
img, emb = send_to_device((img, emb))
|
||||
|
||||
trainer.train()
|
||||
for unet in range(1, trainer.num_unets+1):
|
||||
# Check if this is a unet we are training
|
||||
if unet_training_mask[unet-1]: # Unet index is the unet number - 1
|
||||
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
|
||||
trainer.update(unet_number=unet)
|
||||
losses.append(loss)
|
||||
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
|
||||
continue
|
||||
|
||||
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
|
||||
trainer.update(unet_number=unet)
|
||||
losses.append(loss)
|
||||
|
||||
samples_per_sec = (sample - last_sample) / timer.elapsed()
|
||||
|
||||
timer.reset()
|
||||
last_sample = sample
|
||||
|
||||
if i % 10 == 0:
|
||||
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
|
||||
average_loss = sum(losses) / len(losses)
|
||||
log_data = {
|
||||
"Training loss": average_loss,
|
||||
@@ -310,14 +305,15 @@ def train(
|
||||
save_paths.append("latest.pth")
|
||||
if save_all:
|
||||
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
|
||||
|
||||
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
|
||||
if n_sample_images is not None and n_sample_images > 0:
|
||||
|
||||
if exists(n_sample_images) and n_sample_images > 0:
|
||||
trainer.eval()
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
|
||||
trainer.train()
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
|
||||
|
||||
if epoch_samples is not None and sample >= epoch_samples:
|
||||
if exists(epoch_samples) and sample >= epoch_samples:
|
||||
break
|
||||
|
||||
trainer.eval()
|
||||
@@ -334,12 +330,12 @@ def train(
|
||||
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
|
||||
average_loss += loss
|
||||
|
||||
if i % 10 == 0:
|
||||
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
|
||||
print(f"Epoch {epoch}/{epochs} - {sample / timer.elapsed():.2f} samples/sec")
|
||||
print(f"Loss: {average_loss / (i+1)}")
|
||||
print("")
|
||||
|
||||
if validation_samples is not None and sample >= validation_samples:
|
||||
if exists(validation_samples) and sample >= validation_samples:
|
||||
break
|
||||
|
||||
average_loss /= i+1
|
||||
@@ -349,8 +345,7 @@ def train(
|
||||
tracker.log(log_data, step=step, verbose=True)
|
||||
|
||||
# Compute evaluation metrics
|
||||
trainer.eval()
|
||||
if evaluate_config is not None:
|
||||
if exists(evaluate_config):
|
||||
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config)
|
||||
tracker.log(evaluation, step=step, verbose=True)
|
||||
@@ -376,21 +371,25 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
|
||||
"""
|
||||
Creates a tracker of the specified type and initializes special features based on the full config
|
||||
"""
|
||||
tracker_config = config["tracker"]
|
||||
tracker_config = config.tracker
|
||||
init_config = {}
|
||||
init_config["config"] = config.config
|
||||
|
||||
if exists(tracker_config.init_config):
|
||||
init_config["config"] = tracker_config.init_config
|
||||
|
||||
if tracker_type == "console":
|
||||
tracker = ConsoleTracker(**init_config)
|
||||
elif tracker_type == "wandb":
|
||||
# We need to initialize the resume state here
|
||||
load_config = config["load"]
|
||||
if load_config["source"] == "wandb" and load_config["resume"]:
|
||||
load_config = config.load
|
||||
if load_config.source == "wandb" and load_config.resume:
|
||||
# Then we are resuming the run load_config["run_path"]
|
||||
run_id = config["resume"]["wandb_run_path"].split("/")[-1]
|
||||
run_id = load_config.run_path.split("/")[-1]
|
||||
init_config["id"] = run_id
|
||||
init_config["resume"] = "must"
|
||||
init_config["entity"] = tracker_config["wandb_entity"]
|
||||
init_config["project"] = tracker_config["wandb_project"]
|
||||
|
||||
init_config["entity"] = tracker_config.wandb_entity
|
||||
init_config["project"] = tracker_config.wandb_project
|
||||
tracker = WandbTracker(data_path)
|
||||
tracker.init(**init_config)
|
||||
else:
|
||||
@@ -399,106 +398,43 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
|
||||
|
||||
def initialize_training(config):
|
||||
# Create the save path
|
||||
if "cuda" in config["train"]["device"]:
|
||||
if "cuda" in config.train.device:
|
||||
assert torch.cuda.is_available(), "CUDA is not available"
|
||||
device = torch.device(config["train"]["device"])
|
||||
device = torch.device(config.train.device)
|
||||
torch.cuda.set_device(device)
|
||||
all_shards = list(range(config["data"]["start_shard"], config["data"]["end_shard"] + 1))
|
||||
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
||||
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=all_shards,
|
||||
img_preproc = config.get_preprocessing(),
|
||||
train_prop = config["data"]["splits"]["train"],
|
||||
val_prop = config["data"]["splits"]["val"],
|
||||
test_prop = config["data"]["splits"]["test"],
|
||||
n_sample_images=config["train"]["n_sample_images"],
|
||||
**config["data"]
|
||||
img_preproc = config.data.img_preproc,
|
||||
train_prop = config.data.splits.train,
|
||||
val_prop = config.data.splits.val,
|
||||
test_prop = config.data.splits.test,
|
||||
n_sample_images=config.train.n_sample_images,
|
||||
**config.data.dict()
|
||||
)
|
||||
|
||||
decoder = create_decoder(device, config["decoder"], config["unets"])
|
||||
decoder = config.decoder.create().to(device = device)
|
||||
num_parameters = sum(p.numel() for p in decoder.parameters())
|
||||
print(print_ribbon("Loaded Config", repeat=40))
|
||||
print(f"Number of parameters: {num_parameters}")
|
||||
|
||||
tracker = create_tracker(config, **config["tracker"])
|
||||
tracker = create_tracker(config, **config.tracker.dict())
|
||||
|
||||
train(dataloaders, decoder,
|
||||
tracker=tracker,
|
||||
inference_device=device,
|
||||
load_config=config["load"],
|
||||
evaluate_config=config["evaluate"],
|
||||
**config["train"],
|
||||
load_config=config.load,
|
||||
evaluate_config=config.evaluate,
|
||||
**config.train.dict(),
|
||||
)
|
||||
|
||||
|
||||
class TrainDecoderConfig:
|
||||
def __init__(self, config):
|
||||
self.config = self.map_config(config, default_config)
|
||||
|
||||
def map_config(self, config, defaults):
|
||||
"""
|
||||
Returns a dictionary containing all config options in the union of config and defaults.
|
||||
If the config value is an array, apply the default value to each element.
|
||||
If the default values dict has a value of ConfigField.REQUIRED for a key, it is required and a runtime error should be thrown if a value is not supplied from config
|
||||
"""
|
||||
def _check_option(option, option_config, option_defaults):
|
||||
for key, value in option_defaults.items():
|
||||
if key not in option_config:
|
||||
if value == ConfigField.REQUIRED:
|
||||
raise RuntimeError("Required config value '{}' of option '{}' not supplied".format(key, option))
|
||||
option_config[key] = value
|
||||
|
||||
for key, value in defaults.items():
|
||||
if key not in config:
|
||||
# Then they did not pass in one of the main configs. If the default is an array or object, then we can fill it in. If is a required object, we must error
|
||||
if value == ConfigField.REQUIRED:
|
||||
raise RuntimeError("Required config value '{}' not supplied".format(key))
|
||||
elif isinstance(value, dict):
|
||||
config[key] = {}
|
||||
elif isinstance(value, list):
|
||||
config[key] = [{}]
|
||||
# Config[key] is now either a dict, list of dicts, or an object that cannot be checked.
|
||||
# If it is a list, then we need to check each element
|
||||
if isinstance(value, list):
|
||||
assert isinstance(config[key], list)
|
||||
for element in config[key]:
|
||||
_check_option(key, element, value[0])
|
||||
elif isinstance(value, dict):
|
||||
_check_option(key, config[key], value)
|
||||
# This object does not support checking
|
||||
return config
|
||||
|
||||
def get_preprocessing(self):
|
||||
"""
|
||||
Takes the preprocessing dictionary and converts it to a composition of torchvision transforms
|
||||
"""
|
||||
def _get_transformation(transformation_name, **kwargs):
|
||||
if transformation_name == "RandomResizedCrop":
|
||||
return T.RandomResizedCrop(**kwargs)
|
||||
elif transformation_name == "RandomHorizontalFlip":
|
||||
return T.RandomHorizontalFlip()
|
||||
elif transformation_name == "ToTensor":
|
||||
return T.ToTensor()
|
||||
|
||||
transformations = []
|
||||
for transformation_name, transformation_kwargs in self.config["data"]["preprocessing"].items():
|
||||
if isinstance(transformation_kwargs, dict):
|
||||
transformations.append(_get_transformation(transformation_name, **transformation_kwargs))
|
||||
else:
|
||||
transformations.append(_get_transformation(transformation_name))
|
||||
return T.Compose(transformations)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.config[key]
|
||||
|
||||
# Create a simple click command line interface to load the config and start the training
|
||||
@click.command()
|
||||
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
|
||||
def main(config_file):
|
||||
print("Recalling config from {}".format(config_file))
|
||||
with open(config_file) as f:
|
||||
config = json.load(f)
|
||||
config = TrainDecoderConfig(config)
|
||||
config = TrainDecoderConfig.from_json_path(config_file)
|
||||
initialize_training(config)
|
||||
|
||||
|
||||
|
||||
@@ -9,10 +9,10 @@ from torch import nn
|
||||
|
||||
from dalle2_pytorch.dataloaders import make_splits
|
||||
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
|
||||
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
|
||||
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
|
||||
|
||||
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
|
||||
from dalle2_pytorch.utils import Timer
|
||||
from dalle2_pytorch.utils import Timer, print_ribbon
|
||||
|
||||
from embedding_reader import EmbeddingReader
|
||||
|
||||
|
||||
Reference in New Issue
Block a user