Compare commits

...

20 Commits
0.3.5 ... 0.4.6

Author SHA1 Message Date
Phil Wang
501a8c7c46 small cleanup 2022-05-22 15:39:38 -07:00
Phil Wang
4e49373fc5 project management 2022-05-22 15:27:40 -07:00
Phil Wang
49de72040c fix decoder trainer optimizer loading (since there are multiple for each unet), also save and load step number correctly 2022-05-22 15:21:00 -07:00
Phil Wang
271a376eaf 0.4.3 2022-05-22 15:10:28 -07:00
Phil Wang
e527002472 take care of saving and loading functions on the diffusion prior and decoder training classes 2022-05-22 15:10:15 -07:00
Phil Wang
c12e067178 let the pydantic config base model take care of loading configuration from json path 2022-05-22 14:47:23 -07:00
Phil Wang
c6629c431a make training splits into its own pydantic base model, validate it sums to 1, make decoder script cleaner 2022-05-22 14:43:22 -07:00
Phil Wang
7ac2fc79f2 add renamed train decoder json file 2022-05-22 14:32:50 -07:00
Phil Wang
a1ef023193 use pydantic to manage decoder training configs + defaults and refactor training script 2022-05-22 14:27:40 -07:00
Phil Wang
d49eca62fa dep 2022-05-21 11:27:52 -07:00
Phil Wang
8aab69b91e final thought 2022-05-21 10:47:45 -07:00
Phil Wang
b432df2f7b final cleanup to decoder script 2022-05-21 10:42:16 -07:00
Phil Wang
ebaa0d28c2 product management 2022-05-21 10:30:52 -07:00
Phil Wang
8b0d459b25 move config parsing logic to own file, consider whether to find an off-the-shelf solution at future date 2022-05-21 10:30:10 -07:00
Phil Wang
0064661729 small cleanup of decoder train script 2022-05-21 10:17:13 -07:00
Phil Wang
b895f52843 appreciation section 2022-05-21 08:32:12 -07:00
Phil Wang
80497e9839 accept unets as list for decoder 2022-05-20 20:31:26 -07:00
Phil Wang
f526f14d7c bump 2022-05-20 20:20:40 -07:00
Phil Wang
8997f178d6 small cleanup with timer 2022-05-20 20:05:01 -07:00
Aidan Dempster
022c94e443 Added single GPU training script for decoder (#108)
Added config files for training

Changed example image generation to be more efficient

Added configuration description to README

Removed unused import
2022-05-20 19:46:19 -07:00
12 changed files with 948 additions and 26 deletions

6
.gitignore vendored
View File

@@ -1,6 +1,12 @@
# default experiment tracker data
.tracker-data/
# Configuration Files
configs/*
!configs/*.example
!configs/*_defaults.py
!configs/README.md
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@@ -1034,6 +1034,18 @@ Once built, images will be saved to the same directory the command is invoked
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
## Appreciation
This library would not have gotten to this working state without the help of
- <a href="https://github.com/nousr">Zion</a> and <a href="https://github.com/krish240574">Kumar</a> for the diffusion training script
- <a href="https://github.com/Veldrovive">Aidan</a> for the decoder training script and dataloaders
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
... and many others. Thank you! 🙏
## Todo
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
@@ -1064,6 +1076,9 @@ Once built, images will be saved to the same directory the command is invoked
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
- [x] cross embed layers for downsampling, as an option
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [x] use pydantic for config drive training
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
@@ -1073,12 +1088,9 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations

109
configs/README.md Normal file
View File

@@ -0,0 +1,109 @@
## DALLE2 Training Configurations
For more complex configuration, we provide the option of using a configuration file instead of command line arguments.
### Decoder Trainer
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.example.json).
**<ins>Unets</ins>:**
Each member of this array defines a single unet that will be added to the decoder.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `dim` | Yes | N/A | The starting channels of the unet. |
| `image_embed_dim` | Yes | N/A | The dimension of the image embeddings. |
| `dim_mults` | No | `(1, 2, 4, 8)` | The growth factors of the channels. |
Any parameter from the `Unet` constructor can also be given here.
**<ins>Decoder</ins>:**
Defines the configuration options for the decoder model. The unets defined above will automatically be inserted.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `image_sizes` | Yes | N/A | The resolution of the image after each upsampling step. The length of this array should be the number of unets defined. |
| `image_size` | Yes | N/A | Not used. Can be any number. |
| `timesteps` | No | `1000` | The number of diffusion timesteps used for generation. |
| `loss_type` | No | `l2` | The loss function. Options are `l1`, `huber`, or `l2`. |
| `beta_schedule` | No | `cosine` | The noising schedule. Options are `cosine`, `linear`, `quadratic`, `jsd`, or `sigmoid`. |
| `learned_variance` | No | `True` | Whether to learn the variance. |
Any parameter from the `Decoder` constructor can also be given here.
**<ins>Data</ins>:**
Settings for creation of the dataloaders.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `webdataset_base_url` | Yes | N/A | The url of a shard in the webdataset with the shard replaced with `{}`[^1]. |
| `embeddings_url` | No | N/A | The url of the folder containing embeddings shards. Not required if embeddings are in webdataset. |
| `num_workers` | No | `4` | The number of workers used in the dataloader. |
| `batch_size` | No | `64` | The batch size. |
| `start_shard` | No | `0` | Defines the start of the shard range the dataset will recall. |
| `end_shard` | No | `9999999` | Defines the end of the shard range the dataset will recall. |
| `shard_width` | No | `6` | Defines the width of one webdataset shard number[^2]. |
| `index_width` | No | `4` | Defines the width of the index of a file inside a shard[^3]. |
| `splits` | No | `{ "train": 0.75, "val": 0.15, "test": 0.1 }` | Defines the proportion of shards that will be allocated to the training, validation, and testing datasets. |
| `shuffle_train` | No | `True` | Whether to shuffle the shards of the training dataset. |
| `resample_train` | No | `False` | If true, shards will be randomly sampled with replacement from the datasets making the epoch length infinite if a limit is not set. Cannot be enabled if `shuffle_train` is enabled. |
| `preprocessing` | No | `{ "ToTensor": True }` | Defines preprocessing applied to images from the datasets. |
[^1]: If your shard files have the paths `protocol://path/to/shard/00104.tar`, then the base url would be `protocol://path/to/shard/{}.tar`. If you are using a protocol like `s3`, you need to pipe the tars. For example `pipe:s3cmd get s3://bucket/path/{}.tar -`.
[^2]: This refers to the string length of the shard number for your webdataset shards. For instance, if your webdataset shard has the filename `00104.tar`, your shard length is 5.
[^3]: Inside the webdataset `tar`, you have files named something like `001045945.jpg`. 5 of these characters refer to the shard, and 4 refer to the index of the file in the webdataset (shard is `001041` and index is `5945`). The `index_width` in this case is 4.
**<ins>Train</ins>:**
Settings for controlling the training hyperparameters.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `epochs` | No | `20` | The number of epochs in the training run. |
| `lr` | No | `1e-4` | The learning rate. |
| `wd` | No | `0.01` | The weight decay. |
| `max_grad_norm`| No | `0.5` | The grad norm clipping. |
| `save_every_n_samples` | No | `100000` | Samples will be generated and a checkpoint will be saved every `save_every_n_samples` samples. |
| `device` | No | `cuda:0` | The device to train on. |
| `epoch_samples` | No | `None` | Limits the number of samples iterated through in each epoch. This must be set if resampling. None means no limit. |
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
| `ema_beta` | No | `0.99` | The ema coefficient. |
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
**<ins>Evaluate</ins>:**
Defines which evaluation metrics will be used to test the model.
Each metric can be enabled by setting its configuration. The configuration keys for each metric are defined by the torchmetrics constructors which will be linked.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `n_evalation_samples` | No | `1000` | The number of samples to generate to test the model. |
| `FID` | No | `None` | Setting to an object enables the [Frechet Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html) metric.
| `IS` | No | `None` | Setting to an object enables the [Inception Score](https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html) metric.
| `KID` | No | `None` | Setting to an object enables the [Kernel Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html) metric. |
| `LPIPS` | No | `None` | Setting to an object enables the [Learned Perceptual Image Patch Similarity](https://torchmetrics.readthedocs.io/en/stable/image/learned_perceptual_image_patch_similarity.html) metric. |
**<ins>Tracker</ins>:**
Selects which tracker to use and configures it.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `tracker_type` | No | `console` | Which tracker to use. Currently accepts `console` or `wandb`. |
| `data_path` | No | `./models` | Where the tracker will store local data. |
| `verbose` | No | `False` | Enables console logging for non-console trackers. |
Other configuration options are required for the specific trackers. To see which are required, reference the initializer parameters of each [tracker](../dalle2_pytorch/trackers.py).
**<ins>Load</ins>:**
Selects where to load a pretrained model from.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `source` | No | `None` | Supports `file` or `wandb`. |
| `resume` | No | `False` | If the tracker support resuming the run, resume it. |
Other configuration options are required for loading from a specific source. To see which are required, reference the load methods at the top of the [tracker file](../dalle2_pytorch/trackers.py).

View File

@@ -0,0 +1,99 @@
{
"unets": [
{
"dim": 128,
"image_embed_dim": 768,
"cond_dim": 64,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 32,
"attn_heads": 16
}
],
"decoder": {
"image_sizes": [64],
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
"beta_schedule": "cosine",
"learned_variance": true
},
"data": {
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
"embeddings_url": "s3://bucket/embeddings/path/",
"num_workers": 4,
"batch_size": 64,
"start_shard": 0,
"end_shard": 9999999,
"shard_width": 6,
"index_width": 4,
"splits": {
"train": 0.75,
"val": 0.15,
"test": 0.1
},
"shuffle_train": true,
"resample_train": false,
"preprocessing": {
"RandomResizedCrop": {
"size": [128, 128],
"scale": [0.75, 1.0],
"ratio": [1.0, 1.0]
},
"ToTensor": true
}
},
"train": {
"epochs": 20,
"lr": 1e-4,
"wd": 0.01,
"max_grad_norm": 0.5,
"save_every_n_samples": 100000,
"n_sample_images": 6,
"device": "cuda:0",
"epoch_samples": null,
"validation_samples": null,
"use_ema": true,
"ema_beta": 0.99,
"amp": false,
"save_all": false,
"save_latest": true,
"save_best": true,
"unet_training_mask": [true]
},
"evaluate": {
"n_evaluation_samples": 1000,
"FID": {
"feature": 64
},
"IS": {
"feature": 64,
"splits": 10
},
"KID": {
"feature": 64,
"subset_size": 10
},
"LPIPS": {
"net_type": "vgg",
"reduction": "mean"
}
},
"tracker": {
"tracker_type": "console",
"data_path": "./models",
"wandb_entity": "",
"wandb_project": "",
"verbose": false
},
"load": {
"source": null,
"run_path": "",
"file_path": "",
"resume": false
}
}

View File

@@ -59,6 +59,9 @@ def default(val, d):
return d() if isfunction(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else ((val,) * length)
def module_device(module):

View File

@@ -11,7 +11,8 @@ def get_optimizer(
wd = 1e-2,
betas = (0.9, 0.999),
eps = 1e-8,
filter_by_requires_grad = False
filter_by_requires_grad = False,
**kwargs
):
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))

View File

@@ -0,0 +1,135 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
class UnetConfig(BaseModel):
dim: int
dim_mults: List[int]
image_embed_dim: int = None
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
attn_heads: int = 16
class Config:
extra = "allow"
class DecoderConfig(BaseModel):
image_size: int = None
image_sizes: Union[List[int], Tuple[int]] = None
channels: int = 3
timesteps: int = 1000
loss_type: str = 'l2'
beta_schedule: str = 'cosine'
learned_variance: bool = True
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
if exists(values.get('image_size')) ^ exists(image_sizes):
return image_sizes
raise ValueError('either image_size or image_sizes is required, but not both')
class Config:
extra = "allow"
class TrainSplitConfig(BaseModel):
train: float = 0.75
val: float = 0.15
test: float = 0.1
@root_validator
def validate_all(cls, fields):
if sum([*fields.values()]) != 1.:
raise ValueError(f'{fields.keys()} must sum to 1.0')
return fields
class DecoderDataConfig(BaseModel):
webdataset_base_url: str # path to a webdataset with jpg images
embeddings_url: str # path to .npy files with embeddings
num_workers: int = 4
batch_size: int = 64
start_shard: int = 0
end_shard: int = 9999999
shard_width: int = 6
index_width: int = 4
splits: TrainSplitConfig
shuffle_train: bool = True
resample_train: bool = False
preprocessing: Dict[str, Any] = {'ToTensor': True}
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: float = 1e-4
wd: float = 0.01
max_grad_norm: float = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
save_all: bool = False # Whether to preserve all checkpoints
save_latest: bool = True # Whether to always save the latest checkpoint
save_best: bool = True # Whether to save the best checkpoint
unet_training_mask: List[bool] = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
FID: Dict[str, Any] = None
IS: Dict[str, Any] = None
KID: Dict[str, Any] = None
LPIPS: Dict[str, Any] = None
class TrackerConfig(BaseModel):
tracker_type: str = 'console' # Decoder currently supports console and wandb
data_path: str = './models' # The path where files will be saved locally
init_config: Dict[str, Any] = None
wandb_entity: str = '' # Only needs to be set if tracker_type is wandb
wandb_project: str = ''
verbose: bool = False # Whether to print console logging for non-console trackers
class DecoderLoadConfig(BaseModel):
source: str = None # Supports file and wandb
run_path: str = '' # Used only if source is wandb
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
resume: bool = False # If using wandb, whether to resume the run
class TrainDecoderConfig(BaseModel):
unets: List[UnetConfig]
decoder: DecoderConfig
data: DecoderDataConfig
train: DecoderTrainConfig
evaluate: DecoderEvaluateConfig
tracker: TrackerConfig
load: DecoderLoadConfig
@classmethod
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
return cls(**config)
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.data.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)

View File

@@ -1,5 +1,6 @@
import time
import copy
from pathlib import Path
from math import ceil
from functools import partial, wraps
from collections.abc import Iterable
@@ -55,6 +56,10 @@ def num_to_groups(num, divisor):
arr.append(remainder)
return arr
def get_pkg_version():
from pkg_resources import get_distribution
return get_distribution('dalle2_pytorch').version
# decorators
def cast_torch_tensor(fn):
@@ -128,12 +133,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
@@ -191,7 +190,7 @@ class EMA(nn.Module):
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
self.register_buffer('step', torch.tensor([0]))
def restore_ema_model_device(self):
device = self.initted.device
@@ -287,7 +286,47 @@ class DiffusionPriorTrainer(nn.Module):
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
self.register_buffer('step', torch.tensor([0]))
def save(self, path, overwrite = True):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.diffusion_prior.state_dict(),
version = get_pkg_version(),
step = self.step.item()
)
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if get_pkg_version() != loaded_obj['version']:
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return
self.scaler.load_state_dict(loaded_obj['scaler'])
self.optimizer.load_state_dict(loaded_obj['optimizer'])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
def update(self):
if exists(self.max_grad_norm):
@@ -410,6 +449,57 @@ class DecoderTrainer(nn.Module):
self.register_buffer('step', torch.tensor([0.]))
def save(self, path, overwrite = True):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
model = self.decoder.state_dict(),
version = get_pkg_version(),
step = self.step.item()
)
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if get_pkg_version() != loaded_obj['version']:
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scaler.load_state_dict(loaded_obj[scaler_key])
optimizer.load_state_dict(loaded_obj[optimizer_key])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])

19
dalle2_pytorch/utils.py Normal file
View File

@@ -0,0 +1,19 @@
import time
# time helpers
class Timer:
def __init__(self):
self.reset()
def reset(self):
self.last_time = time.time()
def elapsed(self):
return time.time() - self.last_time
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.3.5',
version = '0.4.6',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -32,6 +32,7 @@ setup(
'kornia>=0.5.4',
'numpy',
'pillow',
'pydantic',
'resize-right>=0.0.2',
'rotary-embedding-torch',
'torch>=1.10',
@@ -41,7 +42,8 @@ setup(
'x-clip>=0.4.4',
'youtokentome',
'webdataset>=0.2.5',
'fsspec>=2022.1.0'
'fsspec>=2022.1.0',
'torchmetrics[image]>=0.8.0'
],
classifiers=[
'Development Status :: 4 - Beta',

456
train_decoder.py Normal file
View File

@@ -0,0 +1,456 @@
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer, print_ribbon
import torchvision
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.kid import KernelInceptionDistance
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import webdataset as wds
import click
# constants
TRAIN_CALC_LOSS_EVERY_ITERS = 10
VALID_CALC_LOSS_EVERY_ITERS = 10
# helpers functions
def exists(val):
return val is not None
# main functions
def create_dataloaders(
available_shards,
webdataset_base_url,
embeddings_url,
shard_width=6,
num_workers=4,
batch_size=32,
n_sample_images=6,
shuffle_train=True,
resample_train=False,
img_preproc = None,
index_width=4,
train_prop = 0.75,
val_prop = 0.15,
test_prop = 0.10,
**kwargs
):
"""
Randomly splits the available shards into train, val, and test sets and returns a dataloader for each
"""
assert train_prop + test_prop + val_prop == 1
num_train = round(train_prop*len(available_shards))
num_test = round(test_prop*len(available_shards))
num_val = len(available_shards) - num_train - num_test
assert num_train + num_test + num_val == len(available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(available_shards)}"
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(0))
# The shard number in the webdataset file names has a fixed width. We zero pad the shard numbers so they correspond to a filename.
train_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in train_split]
test_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in test_split]
val_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in val_split]
create_dataloader = lambda tar_urls, shuffle=False, resample=False, with_text=False, for_sampling=False: create_image_embedding_dataloader(
tar_url=tar_urls,
num_workers=num_workers,
batch_size=batch_size if not for_sampling else n_sample_images,
embeddings_url=embeddings_url,
index_width=index_width,
shuffle_num = None,
extra_keys= ["txt"] if with_text else [],
shuffle_shards = shuffle,
resample_shards = resample,
img_preproc=img_preproc,
handler=wds.handlers.warn_and_continue
)
train_dataloader = create_dataloader(train_urls, shuffle=shuffle_train, resample=resample_train)
train_sampling_dataloader = create_dataloader(train_urls, shuffle=False, for_sampling=True)
val_dataloader = create_dataloader(val_urls, shuffle=False, with_text=True)
test_dataloader = create_dataloader(test_urls, shuffle=False, with_text=True)
test_sampling_dataloader = create_dataloader(test_urls, shuffle=False, for_sampling=True)
return {
"train": train_dataloader,
"train_sampling": train_sampling_dataloader,
"val": val_dataloader,
"test": test_dataloader,
"test_sampling": test_sampling_dataloader
}
def create_decoder(device, decoder_config, unets_config):
"""Creates a sample decoder"""
unets = [Unet(**config.dict()) for config in unets_config]
decoder = Decoder(
unet=unets,
**decoder_config.dict()
)
decoder.to(device=device)
return decoder
def get_dataset_keys(dataloader):
"""
It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it.
"""
# If the dataloader is actually a WebLoader, we need to extract the real dataloader
if isinstance(dataloader, wds.WebLoader):
dataloader = dataloader.pipeline[0]
return dataloader.dataset.key_map
def get_example_data(dataloader, device, n=5):
"""
Samples the dataloader and returns a zipped list of examples
"""
images = []
embeddings = []
captions = []
dataset_keys = get_dataset_keys(dataloader)
has_caption = "txt" in dataset_keys
for data in dataloader:
if has_caption:
img, emb, txt = data
else:
img, emb = data
txt = [""] * emb.shape[0]
img = img.to(device=device, dtype=torch.float)
emb = emb.to(device=device, dtype=torch.float)
images.extend(list(img))
embeddings.extend(list(emb))
captions.extend(list(txt))
if len(images) >= n:
break
print("Generated {} examples".format(len(images)))
return list(zip(images[:n], embeddings[:n], captions[:n]))
def generate_samples(trainer, example_data, text_prepend=""):
"""
Takes example data and generates images from the embeddings
Returns three lists: real images, generated images, and captions
"""
real_images, embeddings, txts = zip(*example_data)
embeddings_tensor = torch.stack(embeddings)
samples = trainer.sample(embeddings_tensor)
generated_images = list(samples)
captions = [text_prepend + txt for txt in txts]
return real_images, generated_images, captions
def generate_grid_samples(trainer, examples, text_prepend=""):
"""
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
"""
real_images, generated_images, captions = generate_samples(trainer, examples, text_prepend)
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
return grid_images, captions
def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
"""
Computes evaluation metrics for the decoder
"""
metrics = {}
# Prepare the data
examples = get_example_data(dataloader, device, n_evaluation_samples)
real_images, generated_images, captions = generate_samples(trainer, examples)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
if exists(FID):
fid = FrechetInceptionDistance(**FID)
fid.to(device=device)
fid.update(int_real_images, real=True)
fid.update(int_generated_images, real=False)
metrics["FID"] = fid.compute().item()
if exists(IS):
inception = InceptionScore(**IS)
inception.to(device=device)
inception.update(int_real_images)
is_mean, is_std = inception.compute()
metrics["IS_mean"] = is_mean.item()
metrics["IS_std"] = is_std.item()
if exists(KID):
kernel_inception = KernelInceptionDistance(**KID)
kernel_inception.to(device=device)
kernel_inception.update(int_real_images, real=True)
kernel_inception.update(int_generated_images, real=False)
kid_mean, kid_std = kernel_inception.compute()
metrics["KID_mean"] = kid_mean.item()
metrics["KID_std"] = kid_std.item()
if exists(LPIPS):
# Convert from [0, 1] to [-1, 1]
renorm_real_images = real_images.mul(2).sub(1)
renorm_generated_images = generated_images.mul(2).sub(1)
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS)
lpips.to(device=device)
lpips.update(renorm_real_images, renorm_generated_images)
metrics["LPIPS"] = lpips.compute().item()
return metrics
def save_trainer(tracker, trainer, epoch, step, validation_losses, relative_paths):
"""
Logs the model with an appropriate method depending on the tracker
"""
if isinstance(relative_paths, str):
relative_paths = [relative_paths]
trainer_state_dict = {}
trainer_state_dict["trainer"] = trainer.state_dict()
trainer_state_dict['epoch'] = epoch
trainer_state_dict['step'] = step
trainer_state_dict['validation_losses'] = validation_losses
for relative_path in relative_paths:
tracker.save_state_dict(trainer_state_dict, relative_path)
def recall_trainer(tracker, trainer, recall_source=None, **load_config):
"""
Loads the model with an appropriate method depending on the tracker
"""
print(print_ribbon(f"Loading model from {recall_source}"))
state_dict = tracker.recall_state_dict(recall_source, **load_config)
trainer.load_state_dict(state_dict["trainer"])
print("Model loaded")
return state_dict["epoch"], state_dict["step"], state_dict["validation_losses"]
def train(
dataloaders,
decoder,
tracker,
inference_device,
load_config=None,
evaluate_config=None,
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
validation_samples = None,
epochs = 20,
n_sample_images = 5,
save_every_n_samples = 100000,
save_all=False,
save_latest=True,
save_best=True,
unet_training_mask=None,
**kwargs
):
"""
Trains a decoder on a dataset.
"""
trainer = DecoderTrainer( # TODO: Change the get_optimizer function so that it can take arbitrary named args so we can just put **kwargs as an argument here
decoder,
**kwargs
)
# Set up starting model and parameters based on a recalled state dict
start_step = 0
start_epoch = 0
validation_losses = []
if exists(load_config) and exists(load_config.source):
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
trainer.to(device=inference_device)
if not exists(unet_training_mask):
# Then the unet mask should be true for all unets in the decoder
unet_training_mask = [True] * trainer.num_unets
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
print(print_ribbon("Generating Example Data", repeat=40))
print("This can take a while to load the shard lists...")
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
send_to_device = lambda arr: [x.to(device=inference_device, dtype=torch.float) for x in arr]
step = start_step
for epoch in range(start_epoch, epochs):
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
timer = Timer()
sample = 0
last_sample = 0
last_snapshot = 0
losses = []
for i, (img, emb) in enumerate(dataloaders["train"]):
step += 1
sample += img.shape[0]
img, emb = send_to_device((img, emb))
trainer.train()
for unet in range(1, trainer.num_unets+1):
# Check if this is a unet we are training
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
continue
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
trainer.update(unet_number=unet)
losses.append(loss)
samples_per_sec = (sample - last_sample) / timer.elapsed()
timer.reset()
last_sample = sample
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
average_loss = sum(losses) / len(losses)
log_data = {
"Training loss": average_loss,
"Epoch": epoch,
"Sample": sample,
"Step": i,
"Samples per second": samples_per_sec
}
tracker.log(log_data, step=step, verbose=True)
losses = []
if last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
last_snapshot = sample
# We need to know where the model should be saved
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_all:
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
if exists(epoch_samples) and sample >= epoch_samples:
break
trainer.eval()
print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
with torch.no_grad():
sample = 0
average_loss = 0
timer = Timer()
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
sample += img.shape[0]
img, emb = send_to_device((img, emb))
for unet in range(1, len(decoder.unets)+1):
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
average_loss += loss
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
print(f"Epoch {epoch}/{epochs} - {sample / timer.elapsed():.2f} samples/sec")
print(f"Loss: {average_loss / (i+1)}")
print("")
if exists(validation_samples) and sample >= validation_samples:
break
average_loss /= i+1
log_data = {
"Validation loss": average_loss
}
tracker.log(log_data, step=step, verbose=True)
# Compute evaluation metrics
if exists(evaluate_config):
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config)
tracker.log(evaluation, step=step, verbose=True)
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step)
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
# Get the same paths
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
save_paths.append("best.pth")
validation_losses.append(average_loss)
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
"""
Creates a tracker of the specified type and initializes special features based on the full config
"""
tracker_config = config.tracker
init_config = {}
if exists(tracker_config.init_config):
init_config["config"] = tracker_config.init_config
if tracker_type == "console":
tracker = ConsoleTracker(**init_config)
elif tracker_type == "wandb":
# We need to initialize the resume state here
load_config = config.load
if load_config.source == "wandb" and load_config.resume:
# Then we are resuming the run load_config["run_path"]
run_id = load_config.run_path.split("/")[-1]
init_config["id"] = run_id
init_config["resume"] = "must"
init_config["entity"] = tracker_config.wandb_entity
init_config["project"] = tracker_config.wandb_project
tracker = WandbTracker(data_path)
tracker.init(**init_config)
else:
raise ValueError(f"Tracker type {tracker_type} not supported by decoder trainer")
return tracker
def initialize_training(config):
# Create the save path
if "cuda" in config.train.device:
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device(config.train.device)
torch.cuda.set_device(device)
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
dataloaders = create_dataloaders (
available_shards=all_shards,
img_preproc = config.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict()
)
decoder = create_decoder(device, config.decoder, config.unets)
num_parameters = sum(p.numel() for p in decoder.parameters())
print(print_ribbon("Loaded Config", repeat=40))
print(f"Number of parameters: {num_parameters}")
tracker = create_tracker(config, **config.tracker.dict())
train(dataloaders, decoder,
tracker=tracker,
inference_device=device,
load_config=config.load,
evaluate_config=config.evaluate,
**config.train.dict(),
)
# Create a simple click command line interface to load the config and start the training
@click.command()
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
def main(config_file):
print("Recalling config from {}".format(config_file))
config = TrainDecoderConfig.from_json_path(config_file)
initialize_training(config)
if __name__ == "__main__":
main()

View File

@@ -1,7 +1,6 @@
from pathlib import Path
import click
import math
import time
import numpy as np
import torch
@@ -10,9 +9,10 @@ from torch import nn
from dalle2_pytorch.dataloaders import make_splits
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer, print_ribbon
from embedding_reader import EmbeddingReader
@@ -29,16 +29,6 @@ tracker = WandbTracker()
def exists(val):
val is not None
class Timer:
def __init__(self):
self.reset()
def reset(self):
self.last_time = time.time()
def elapsed(self):
return time.time() - self.last_time
# functions
def eval_model(model, dataloader, text_conditioned, loss_type, phase="Validation"):