mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
430961cb97 | ||
|
|
721f9687c1 | ||
|
|
e0524a6aff | ||
|
|
c85e0d5c35 | ||
|
|
db0642c4cd | ||
|
|
bb86ab2404 | ||
|
|
ae056dd67c | ||
|
|
033d6b0ce8 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -1,3 +1,6 @@
|
||||
# default experiment tracker data
|
||||
.tracker-data/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
||||
@@ -18,7 +18,11 @@ There was enough interest for a <a href="https://github.com/lucidrains/dalle2-ja
|
||||
|
||||
- A research group has used the code in this repository to train a functional diffusion prior for their CLIP generations. Will share their work once they release their preprint. This, and <a href="https://github.com/crowsonkb">Katherine's</a> own experiments, validate OpenAI's finding that the extra prior increases variety of generations.
|
||||
|
||||
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers
|
||||
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers. 2 researchers have also confirmed Decoder is working for them.
|
||||
|
||||
<img src="./samples/oxford.png" width="600px" />
|
||||
|
||||
*ongoing at 21k steps*
|
||||
|
||||
## Install
|
||||
|
||||
|
||||
@@ -1697,7 +1697,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip_adapter_overrides = dict(),
|
||||
learned_variance = True,
|
||||
vb_loss_weight = 0.001,
|
||||
unconditional = False
|
||||
unconditional = False,
|
||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||
):
|
||||
super().__init__(
|
||||
beta_schedule = beta_schedule,
|
||||
@@ -1806,6 +1807,10 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip_denoised = clip_denoised
|
||||
self.clip_x_start = clip_x_start
|
||||
|
||||
# normalize and unnormalize image functions
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
||||
|
||||
def get_unet(self, unet_number):
|
||||
assert 0 < unet_number <= len(self.unets)
|
||||
index = unet_number - 1
|
||||
@@ -1877,7 +1882,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
img = self.p_sample(
|
||||
@@ -1894,7 +1899,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
|
||||
unnormalize_img = unnormalize_zero_to_one(img)
|
||||
unnormalize_img = self.unnormalize_img(img)
|
||||
return unnormalize_img
|
||||
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
||||
@@ -1903,8 +1908,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
# normalize to [-1, 1]
|
||||
|
||||
if not is_latent_diffusion:
|
||||
x_start = normalize_neg_one_to_one(x_start)
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
x_start = self.normalize_img(x_start)
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
# get x_t
|
||||
|
||||
|
||||
41
dalle2_pytorch/dataloaders/README.md
Normal file
41
dalle2_pytorch/dataloaders/README.md
Normal file
@@ -0,0 +1,41 @@
|
||||
## Dataloaders
|
||||
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
|
||||
|
||||
### Decoder: Image Embedding Dataset
|
||||
When training the decoder (and up samplers if training together) in isolation, you will need to load images and corresponding image embeddings. This dataset can read two similar types of datasets. First, it can read a [webdataset](https://github.com/webdataset/webdataset) that contains `.jpg` and `.npy` files in the `.tar`s that contain the images and associated image embeddings respectively. Alternatively, you can also specify a source for the embeddings outside of the webdataset. In this case, the path to the embeddings should contain `.npy` files with the same shard numbers as the webdataset and there should be a correspondence between the filename of the `.jpg` and the index of the embedding in the `.npy`. So, for example, `0001.tar` from the webdataset with image `00010509.jpg` (the first 4 digits are the shard number and the last 4 are the index) in it should be paralleled by a `img_emb_0001.npy` which contains a NumPy array with the embedding at index 509.
|
||||
|
||||
Generating a dataset of this type:
|
||||
1. Use [img2dataset](https://github.com/rom1504/img2dataset) to generate a webdataset.
|
||||
2. Use [clip-retrieval](https://github.com/rom1504/clip-retrieval) to convert the images to embeddings.
|
||||
3. Use [embedding-dataset-reordering](https://github.com/Veldrovive/embedding-dataset-reordering) to reorder the embeddings into the expected format.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embedding_dataloader
|
||||
|
||||
# Create a dataloader directly.
|
||||
dataloader = create_image_embedding_dataloader(
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
|
||||
num_workers=4,
|
||||
batch_size=32,
|
||||
shard_width=4, # If a file in the webdataset shard 3 is named 0003039.jpg, we know the shard width is 4 and the last three digits are the index
|
||||
shuffle_num=200, # Does a shuffle of the data with a buffer size of 200
|
||||
shuffle_shards=True, # Shuffle the order the shards are read in
|
||||
resample_shards=False, # Sample shards with replacement. If true, an epoch will be infinite unless stopped manually
|
||||
)
|
||||
for img, emb in dataloader:
|
||||
print(img.shape) # torch.Size([32, 3, 256, 256])
|
||||
print(emb.shape) # torch.Size([32, 512])
|
||||
# Train decoder only as shown above
|
||||
|
||||
# Or create a dataset without a loader so you can configure it manually
|
||||
dataset = ImageEmbeddingDataset(
|
||||
urls="/path/or/url/to/webdataset/{0000..9999}.tar",
|
||||
embedding_folder_url="path/or/url/to/embeddings/folder",
|
||||
shard_width=4,
|
||||
shuffle_shards=True,
|
||||
resample=False
|
||||
)
|
||||
```
|
||||
|
||||
@@ -3,6 +3,7 @@ import webdataset as wds
|
||||
import torch
|
||||
import numpy as np
|
||||
import fsspec
|
||||
import shutil
|
||||
|
||||
def get_shard(filename):
|
||||
"""
|
||||
@@ -20,7 +21,7 @@ def get_example_file(fs, path, file_format):
|
||||
"""
|
||||
return fs.glob(os.path.join(path, f"*.{file_format}"))[0]
|
||||
|
||||
def embedding_inserter(samples, embeddings_url, shard_width, handler=wds.handlers.reraise_exception):
|
||||
def embedding_inserter(samples, embeddings_url, index_width, handler=wds.handlers.reraise_exception):
|
||||
"""Given a datum of {"__key__": str, "__url__": str, ...} adds the cooresponding embedding and yields"""
|
||||
previous_tar_url = None
|
||||
current_embeddings = None
|
||||
@@ -50,8 +51,12 @@ def embedding_inserter(samples, embeddings_url, shard_width, handler=wds.handler
|
||||
previous_tar_url = tar_url
|
||||
current_embeddings = load_corresponding_embeds(tar_url)
|
||||
|
||||
embedding_index = int(key[shard_width:])
|
||||
sample["npy"] = current_embeddings[embedding_index]
|
||||
embedding_index = int(key[-index_width:])
|
||||
embedding = current_embeddings[embedding_index]
|
||||
# We need to check if this sample is nonzero. If it is, this embedding is not valid and we should continue to the next loop
|
||||
if torch.count_nonzero(embedding) == 0:
|
||||
raise RuntimeError(f"Webdataset had a sample, but no embedding was found. ImgShard: {key[:-index_width]} - Index: {key[-index_width:]}")
|
||||
sample["npy"] = embedding
|
||||
yield sample
|
||||
except Exception as exn: # From wds implementation
|
||||
if handler(exn):
|
||||
@@ -60,6 +65,28 @@ def embedding_inserter(samples, embeddings_url, shard_width, handler=wds.handler
|
||||
break
|
||||
insert_embedding = wds.filters.pipelinefilter(embedding_inserter)
|
||||
|
||||
def unassociated_shard_skipper(tarfiles, embeddings_url, handler=wds.handlers.reraise_exception):
|
||||
"""Finds if the is a corresponding embedding for the tarfile at { url: [URL] }"""
|
||||
embeddings_fs, embeddings_path = fsspec.core.url_to_fs(embeddings_url)
|
||||
embedding_files = embeddings_fs.ls(embeddings_path)
|
||||
get_embedding_shard = lambda embedding_file: int(embedding_file.split("_")[-1].split(".")[0])
|
||||
embedding_shards = set([get_embedding_shard(filename) for filename in embedding_files]) # Sets have O(1) check for member
|
||||
|
||||
get_tar_shard = lambda tar_file: int(tar_file.split("/")[-1].split(".")[0])
|
||||
for tarfile in tarfiles:
|
||||
try:
|
||||
webdataset_shard = get_tar_shard(tarfile["url"])
|
||||
# If this shard has an associated embeddings file, we pass it through. Otherwise we iterate until we do have one
|
||||
if webdataset_shard in embedding_shards:
|
||||
yield tarfile
|
||||
except Exception as exn: # From wds implementation
|
||||
if handler(exn):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
skip_unassociated_shards = wds.filters.pipelinefilter(unassociated_shard_skipper)
|
||||
|
||||
def verify_keys(samples, handler=wds.handlers.reraise_exception):
|
||||
"""
|
||||
Requires that both the image and embedding are present in the sample
|
||||
@@ -86,7 +113,9 @@ class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
|
||||
self,
|
||||
urls,
|
||||
embedding_folder_url=None,
|
||||
shard_width=None,
|
||||
index_width=None,
|
||||
img_preproc=None,
|
||||
extra_keys=[],
|
||||
handler=wds.handlers.reraise_exception,
|
||||
resample=False,
|
||||
shuffle_shards=True
|
||||
@@ -97,13 +126,31 @@ class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
|
||||
:param urls: A url pointing to the tar files of the webdataset formatted as /path/to/webdataset/{0000..9999}.tar
|
||||
:param embedding_folder_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset.
|
||||
Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros.
|
||||
:param shard_width: The number of digits in the shard number. This is used to align the embedding index with the image index.
|
||||
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard with this 4 and the last three digits are the index.
|
||||
:param index_width: The number of digits in the index. This is used to align the embedding index with the image index.
|
||||
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width.
|
||||
:param img_preproc: This function is run on the img before it is batched and returned. Useful for data augmentation or converting to torch tensor.
|
||||
:param handler: A webdataset handler.
|
||||
:param resample: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely.
|
||||
:param shuffle_shards: If true, shuffle the shards before resampling. This cannot be true if resample is true.
|
||||
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
keys = ["jpg", "npy"] + extra_keys
|
||||
self.key_map = {key: i for i, key in enumerate(keys)}
|
||||
self.resampling = resample
|
||||
self.img_preproc = img_preproc
|
||||
# If s3, check if s3fs is installed and s3cmd is installed and check if the data is piped instead of straight up
|
||||
if (isinstance(urls, str) and "s3:" in urls) or (isinstance(urls, list) and any(["s3:" in url for url in urls])):
|
||||
# Then this has an s3 link for the webdataset and we need extra packages
|
||||
if shutil.which("s3cmd") is None:
|
||||
raise RuntimeError("s3cmd is required for s3 webdataset")
|
||||
if "s3:" in embedding_folder_url:
|
||||
# Then the embeddings are being loaded from s3 and fsspec requires s3fs
|
||||
try:
|
||||
import s3fs
|
||||
except ImportError:
|
||||
raise RuntimeError("s3fs is required to load embeddings from s3")
|
||||
# Add the shardList and randomize or resample if requested
|
||||
if resample:
|
||||
assert not shuffle_shards, "Cannot both resample and shuffle"
|
||||
@@ -112,28 +159,43 @@ class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
|
||||
self.append(wds.SimpleShardList(urls))
|
||||
if shuffle_shards:
|
||||
self.append(wds.filters.shuffle(1000))
|
||||
|
||||
if embedding_folder_url is not None:
|
||||
# There may be webdataset shards that do not have a embedding shard associated with it. If we do not skip these, they would cause issues.
|
||||
self.append(skip_unassociated_shards(embeddings_url=embedding_folder_url, handler=handler))
|
||||
|
||||
self.append(wds.split_by_node)
|
||||
self.append(wds.split_by_worker)
|
||||
|
||||
self.append(wds.tarfile_to_samples(handler=handler))
|
||||
self.append(wds.decode("torchrgb"))
|
||||
self.append(wds.decode("pilrgb", handler=handler))
|
||||
if embedding_folder_url is not None:
|
||||
assert shard_width is not None, "Reading embeddings separately requires shard length to be given"
|
||||
self.append(insert_embedding(embeddings_url=embedding_folder_url, shard_width=shard_width, handler=handler))
|
||||
# Then we are loading embeddings for a remote source
|
||||
assert index_width is not None, "Reading embeddings separately requires index width length to be given"
|
||||
self.append(insert_embedding(embeddings_url=embedding_folder_url, index_width=index_width, handler=handler))
|
||||
self.append(verify_keys)
|
||||
self.append(wds.to_tuple("jpg", "npy"))
|
||||
# Apply preprocessing
|
||||
self.append(wds.map(self.preproc))
|
||||
self.append(wds.to_tuple(*keys))
|
||||
|
||||
def preproc(self, sample):
|
||||
"""Applies the preprocessing for images"""
|
||||
if self.img_preproc is not None:
|
||||
sample["jpg"] = self.img_preproc(sample["jpg"])
|
||||
return sample
|
||||
|
||||
def create_image_embedding_dataloader(
|
||||
tar_url,
|
||||
num_workers,
|
||||
batch_size,
|
||||
embeddings_url=None,
|
||||
shard_width=None,
|
||||
index_width=None,
|
||||
shuffle_num = None,
|
||||
shuffle_shards = True,
|
||||
resample_shards = False,
|
||||
handler=wds.handlers.warn_and_continue
|
||||
img_preproc=None,
|
||||
extra_keys=[],
|
||||
handler=wds.handlers.reraise_exception#warn_and_continue
|
||||
):
|
||||
"""
|
||||
Convenience function to create an image embedding dataseta and dataloader in one line
|
||||
@@ -143,8 +205,8 @@ def create_image_embedding_dataloader(
|
||||
:param batch_size: The batch size to use for the dataloader
|
||||
:param embeddings_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset.
|
||||
Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros.
|
||||
:param shard_width: The number of digits in the shard number. This is used to align the embedding index with the image index.
|
||||
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard width is 4 and the last three digits are the index.
|
||||
:param index_width: The number of digits in the index. This is used to align the embedding index with the image index.
|
||||
For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width.
|
||||
:param shuffle_num: If not None, shuffle the dataset with this size buffer after sampling.
|
||||
:param shuffle_shards: If true, shuffle the shards before sampling. This cannot be true if resample is true.
|
||||
:param resample_shards: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely.
|
||||
@@ -153,9 +215,11 @@ def create_image_embedding_dataloader(
|
||||
ds = ImageEmbeddingDataset(
|
||||
tar_url,
|
||||
embeddings_url,
|
||||
shard_width=shard_width,
|
||||
index_width=index_width,
|
||||
shuffle_shards=shuffle_shards,
|
||||
resample=resample_shards,
|
||||
extra_keys=extra_keys,
|
||||
img_preproc=img_preproc,
|
||||
handler=handler
|
||||
)
|
||||
if shuffle_num is not None and shuffle_num > 0:
|
||||
|
||||
@@ -1,17 +1,45 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import importlib
|
||||
from itertools import zip_longest
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
# constants
|
||||
|
||||
DEFAULT_DATA_PATH = './.tracker-data'
|
||||
|
||||
# helper functions
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
# load state dict functions
|
||||
|
||||
def load_wandb_state_dict(run_path, file_path, **kwargs):
|
||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
||||
return torch.load(file_reference.name)
|
||||
|
||||
def load_local_state_dict(file_path, **kwargs):
|
||||
return torch.load(file_path)
|
||||
|
||||
# base class
|
||||
|
||||
class BaseTracker(nn.Module):
|
||||
def __init__(self):
|
||||
def __init__(self, data_path = DEFAULT_DATA_PATH):
|
||||
super().__init__()
|
||||
self.data_path = Path(data_path)
|
||||
self.data_path.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
def init(self, config, **kwargs):
|
||||
raise NotImplementedError
|
||||
@@ -19,6 +47,27 @@ class BaseTracker(nn.Module):
|
||||
def log(self, log, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def log_images(self, images, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def save_state_dict(self, state_dict, relative_path, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def recall_state_dict(self, recall_source, *args, **kwargs):
|
||||
"""
|
||||
Loads a state dict from any source.
|
||||
Since a user may wish to load a model from a different source than their own tracker (i.e. tracking using wandb but recalling from disk),
|
||||
this should not be linked to any individual tracker.
|
||||
"""
|
||||
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
|
||||
if recall_source == 'wandb':
|
||||
return load_wandb_state_dict(*args, **kwargs)
|
||||
elif recall_source == 'local':
|
||||
return load_local_state_dict(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError('`recall_source` must be one of `wandb` or `local`')
|
||||
|
||||
|
||||
# basic stdout class
|
||||
|
||||
class ConsoleTracker(BaseTracker):
|
||||
@@ -28,22 +77,39 @@ class ConsoleTracker(BaseTracker):
|
||||
def log(self, log, **kwargs):
|
||||
print(log)
|
||||
|
||||
def log_images(self, images, **kwargs): # noop for logging images
|
||||
pass
|
||||
|
||||
def save_state_dict(self, state_dict, relative_path, **kwargs):
|
||||
torch.save(state_dict, str(self.data_path / relative_path))
|
||||
|
||||
# basic wandb class
|
||||
|
||||
class WandbTracker(BaseTracker):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
try:
|
||||
import wandb
|
||||
except ImportError as e:
|
||||
print('`pip install wandb` to use the wandb experiment tracker')
|
||||
raise e
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb experiment tracker')
|
||||
os.environ["WANDB_SILENT"] = "true"
|
||||
self.wandb = wandb
|
||||
|
||||
def init(self, **config):
|
||||
self.wandb.init(**config)
|
||||
|
||||
def log(self, log, **kwargs):
|
||||
def log(self, log, verbose=False, **kwargs):
|
||||
if verbose:
|
||||
print(log)
|
||||
self.wandb.log(log, **kwargs)
|
||||
|
||||
def log_images(self, images, captions=[], image_section="images", **kwargs):
|
||||
"""
|
||||
Takes a tensor of images and a list of captions and logs them to wandb.
|
||||
"""
|
||||
wandb_images = [self.wandb.Image(image, caption=caption) for image, caption in zip_longest(images, captions)]
|
||||
self.log({ image_section: wandb_images }, **kwargs)
|
||||
|
||||
def save_state_dict(self, state_dict, relative_path, **kwargs):
|
||||
"""
|
||||
Saves a state_dict to disk and uploads it
|
||||
"""
|
||||
full_path = str(self.data_path / relative_path)
|
||||
torch.save(state_dict, full_path)
|
||||
self.wandb.save(full_path, base_path = str(self.data_path)) # Upload and keep relative to data_path
|
||||
|
||||
@@ -366,7 +366,7 @@ class DecoderTrainer(nn.Module):
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
eps = 1e-8,
|
||||
max_grad_norm = None,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
BIN
samples/oxford.png
Normal file
BIN
samples/oxford.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 985 KiB |
Reference in New Issue
Block a user