mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bb86ab2404 | ||
|
|
ae056dd67c | ||
|
|
033d6b0ce8 | ||
|
|
c7ea8748db |
@@ -18,7 +18,11 @@ There was enough interest for a <a href="https://github.com/lucidrains/dalle2-ja
|
||||
|
||||
- A research group has used the code in this repository to train a functional diffusion prior for their CLIP generations. Will share their work once they release their preprint. This, and <a href="https://github.com/crowsonkb">Katherine's</a> own experiments, validate OpenAI's finding that the extra prior increases variety of generations.
|
||||
|
||||
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers
|
||||
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers. 2 researchers have also confirmed Decoder is working for them.
|
||||
|
||||
<img src="./samples/oxford.png" width="600px" />
|
||||
|
||||
*ongoing at 21k steps*
|
||||
|
||||
## Install
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ def separate_weight_decayable_params(params):
|
||||
|
||||
def get_optimizer(
|
||||
params,
|
||||
lr = 2e-5,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
|
||||
@@ -363,10 +363,10 @@ class DecoderTrainer(nn.Module):
|
||||
self,
|
||||
decoder,
|
||||
use_ema = True,
|
||||
lr = 2e-5,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
eps = 1e-8,
|
||||
max_grad_norm = None,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
BIN
samples/oxford.png
Normal file
BIN
samples/oxford.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 985 KiB |
Reference in New Issue
Block a user