|
|
|
|
@@ -1,7 +1,7 @@
|
|
|
|
|
import math
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from inspect import isfunction
|
|
|
|
|
from functools import partial
|
|
|
|
|
from functools import partial, wraps
|
|
|
|
|
from contextlib import contextmanager
|
|
|
|
|
from collections import namedtuple
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
@@ -33,6 +33,10 @@ from rotary_embedding_torch import RotaryEmbedding
|
|
|
|
|
from x_clip import CLIP
|
|
|
|
|
from coca_pytorch import CoCa
|
|
|
|
|
|
|
|
|
|
# constants
|
|
|
|
|
|
|
|
|
|
NAT = 1. / math.log(2.)
|
|
|
|
|
|
|
|
|
|
# helper functions
|
|
|
|
|
|
|
|
|
|
def exists(val):
|
|
|
|
|
@@ -41,6 +45,14 @@ def exists(val):
|
|
|
|
|
def identity(t, *args, **kwargs):
|
|
|
|
|
return t
|
|
|
|
|
|
|
|
|
|
def maybe(fn):
|
|
|
|
|
@wraps(fn)
|
|
|
|
|
def inner(x):
|
|
|
|
|
if not exists(x):
|
|
|
|
|
return x
|
|
|
|
|
return fn(x)
|
|
|
|
|
return inner
|
|
|
|
|
|
|
|
|
|
def default(val, d):
|
|
|
|
|
if exists(val):
|
|
|
|
|
return val
|
|
|
|
|
@@ -91,6 +103,9 @@ def freeze_model_and_make_eval_(model):
|
|
|
|
|
|
|
|
|
|
# tensor helpers
|
|
|
|
|
|
|
|
|
|
def log(t, eps = 1e-12):
|
|
|
|
|
return torch.log(t.clamp(min = eps))
|
|
|
|
|
|
|
|
|
|
def l2norm(t):
|
|
|
|
|
return F.normalize(t, dim = -1)
|
|
|
|
|
|
|
|
|
|
@@ -107,10 +122,10 @@ def resize_image_to(image, target_image_size):
|
|
|
|
|
# ddpms expect images to be in the range of -1 to 1
|
|
|
|
|
# but CLIP may otherwise
|
|
|
|
|
|
|
|
|
|
def normalize_img(img):
|
|
|
|
|
def normalize_neg_one_to_one(img):
|
|
|
|
|
return img * 2 - 1
|
|
|
|
|
|
|
|
|
|
def unnormalize_img(normed_img):
|
|
|
|
|
def unnormalize_zero_to_one(normed_img):
|
|
|
|
|
return (normed_img + 1) * 0.5
|
|
|
|
|
|
|
|
|
|
# clip related adapters
|
|
|
|
|
@@ -271,7 +286,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|
|
|
|
def embed_image(self, image):
|
|
|
|
|
assert not self.cleared
|
|
|
|
|
image = resize_image_to(image, self.image_size)
|
|
|
|
|
image = self.clip_normalize(unnormalize_img(image))
|
|
|
|
|
image = self.clip_normalize(image)
|
|
|
|
|
image_embed = self.clip.encode_image(image)
|
|
|
|
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
|
|
|
|
|
|
|
|
|
@@ -297,6 +312,36 @@ def noise_like(shape, device, repeat=False):
|
|
|
|
|
noise = lambda: torch.randn(shape, device=device)
|
|
|
|
|
return repeat_noise() if repeat else noise()
|
|
|
|
|
|
|
|
|
|
def meanflat(x):
|
|
|
|
|
return x.mean(dim = tuple(range(1, len(x.shape))))
|
|
|
|
|
|
|
|
|
|
def normal_kl(mean1, logvar1, mean2, logvar2):
|
|
|
|
|
return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * torch.exp(-logvar2))
|
|
|
|
|
|
|
|
|
|
def approx_standard_normal_cdf(x):
|
|
|
|
|
return 0.5 * (1.0 + torch.tanh(((2.0 / math.pi) ** 0.5) * (x + 0.044715 * (x ** 3))))
|
|
|
|
|
|
|
|
|
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales, thres = 0.999):
|
|
|
|
|
assert x.shape == means.shape == log_scales.shape
|
|
|
|
|
|
|
|
|
|
centered_x = x - means
|
|
|
|
|
inv_stdv = torch.exp(-log_scales)
|
|
|
|
|
plus_in = inv_stdv * (centered_x + 1. / 255.)
|
|
|
|
|
cdf_plus = approx_standard_normal_cdf(plus_in)
|
|
|
|
|
min_in = inv_stdv * (centered_x - 1. / 255.)
|
|
|
|
|
cdf_min = approx_standard_normal_cdf(min_in)
|
|
|
|
|
log_cdf_plus = log(cdf_plus)
|
|
|
|
|
log_one_minus_cdf_min = log(1. - cdf_min)
|
|
|
|
|
cdf_delta = cdf_plus - cdf_min
|
|
|
|
|
|
|
|
|
|
log_probs = torch.where(x < -thres,
|
|
|
|
|
log_cdf_plus,
|
|
|
|
|
torch.where(x > thres,
|
|
|
|
|
log_one_minus_cdf_min,
|
|
|
|
|
log(cdf_delta)))
|
|
|
|
|
|
|
|
|
|
return log_probs
|
|
|
|
|
|
|
|
|
|
def cosine_beta_schedule(timesteps, s = 0.008):
|
|
|
|
|
"""
|
|
|
|
|
cosine schedule
|
|
|
|
|
@@ -398,12 +443,6 @@ class BaseGaussianDiffusion(nn.Module):
|
|
|
|
|
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
|
|
|
|
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
|
|
|
|
|
|
|
|
|
def q_mean_variance(self, x_start, t):
|
|
|
|
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
|
|
|
|
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
|
|
|
|
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
|
|
|
|
return mean, variance, log_variance
|
|
|
|
|
|
|
|
|
|
def q_posterior(self, x_start, x_t, t):
|
|
|
|
|
posterior_mean = (
|
|
|
|
|
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
|
|
|
|
@@ -831,7 +870,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
|
|
|
|
image_channels = 3,
|
|
|
|
|
timesteps = 1000,
|
|
|
|
|
cond_drop_prob = 0.,
|
|
|
|
|
loss_type = "l1",
|
|
|
|
|
loss_type = "l2",
|
|
|
|
|
predict_x_start = True,
|
|
|
|
|
beta_schedule = "cosine",
|
|
|
|
|
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
|
|
|
|
|
@@ -1142,7 +1181,11 @@ class CrossAttention(nn.Module):
|
|
|
|
|
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
|
|
|
|
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
|
|
|
|
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
|
|
|
|
|
|
|
|
|
self.to_out = nn.Sequential(
|
|
|
|
|
nn.Linear(inner_dim, dim, bias = False),
|
|
|
|
|
LayerNorm(dim)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, context, mask = None):
|
|
|
|
|
b, n, device = *x.shape[:2], x.device
|
|
|
|
|
@@ -1272,6 +1315,7 @@ class Unet(nn.Module):
|
|
|
|
|
out_dim = None,
|
|
|
|
|
dim_mults=(1, 2, 4, 8),
|
|
|
|
|
channels = 3,
|
|
|
|
|
channels_out = None,
|
|
|
|
|
attn_dim_head = 32,
|
|
|
|
|
attn_heads = 16,
|
|
|
|
|
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
|
|
|
|
@@ -1302,6 +1346,7 @@ class Unet(nn.Module):
|
|
|
|
|
# determine dimensions
|
|
|
|
|
|
|
|
|
|
self.channels = channels
|
|
|
|
|
self.channels_out = default(channels_out, channels)
|
|
|
|
|
|
|
|
|
|
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
|
|
|
|
init_dim = default(init_dim, dim // 3 * 2)
|
|
|
|
|
@@ -1407,11 +1452,9 @@ class Unet(nn.Module):
|
|
|
|
|
Upsample(dim_in)
|
|
|
|
|
]))
|
|
|
|
|
|
|
|
|
|
out_dim = default(out_dim, channels)
|
|
|
|
|
|
|
|
|
|
self.final_conv = nn.Sequential(
|
|
|
|
|
ResnetBlock(dim, dim, groups = resnet_groups[0]),
|
|
|
|
|
nn.Conv2d(dim, out_dim, 1)
|
|
|
|
|
nn.Conv2d(dim, self.channels_out, 1)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# if the current settings for the unet are not correct
|
|
|
|
|
@@ -1421,13 +1464,25 @@ class Unet(nn.Module):
|
|
|
|
|
*,
|
|
|
|
|
lowres_cond,
|
|
|
|
|
channels,
|
|
|
|
|
channels_out,
|
|
|
|
|
cond_on_image_embeds,
|
|
|
|
|
cond_on_text_encodings
|
|
|
|
|
):
|
|
|
|
|
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds and cond_on_text_encodings == self.cond_on_text_encodings:
|
|
|
|
|
if lowres_cond == self.lowres_cond and \
|
|
|
|
|
channels == self.channels and \
|
|
|
|
|
cond_on_image_embeds == self.cond_on_image_embeds and \
|
|
|
|
|
cond_on_text_encodings == self.cond_on_text_encodings and \
|
|
|
|
|
channels_out == self.channels_out:
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds, 'cond_on_text_encodings': cond_on_text_encodings}
|
|
|
|
|
updated_kwargs = dict(
|
|
|
|
|
lowres_cond = lowres_cond,
|
|
|
|
|
channels = channels,
|
|
|
|
|
channels_out = channels_out,
|
|
|
|
|
cond_on_image_embeds = cond_on_image_embeds,
|
|
|
|
|
cond_on_text_encodings = cond_on_text_encodings
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return self.__class__(**{**self._locals, **updated_kwargs})
|
|
|
|
|
|
|
|
|
|
def forward_with_cond_scale(
|
|
|
|
|
@@ -1492,11 +1547,12 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
if self.cond_on_image_embeds:
|
|
|
|
|
image_tokens = self.image_to_cond(image_embed)
|
|
|
|
|
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
|
|
|
|
|
|
|
|
|
|
image_tokens = torch.where(
|
|
|
|
|
image_keep_mask,
|
|
|
|
|
image_tokens,
|
|
|
|
|
self.null_image_embed
|
|
|
|
|
null_image_embed
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# take care of text encodings (optional)
|
|
|
|
|
@@ -1520,10 +1576,12 @@ class Unet(nn.Module):
|
|
|
|
|
text_mask = rearrange(text_mask, 'b n -> b n 1')
|
|
|
|
|
text_keep_mask = text_mask & text_keep_mask
|
|
|
|
|
|
|
|
|
|
null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working
|
|
|
|
|
|
|
|
|
|
text_tokens = torch.where(
|
|
|
|
|
text_keep_mask,
|
|
|
|
|
text_tokens,
|
|
|
|
|
self.null_text_embed
|
|
|
|
|
null_text_embed
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# main conditioning tokens (c)
|
|
|
|
|
@@ -1611,7 +1669,7 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
timesteps = 1000,
|
|
|
|
|
image_cond_drop_prob = 0.1,
|
|
|
|
|
text_cond_drop_prob = 0.5,
|
|
|
|
|
loss_type = 'l1',
|
|
|
|
|
loss_type = 'l2',
|
|
|
|
|
beta_schedule = 'cosine',
|
|
|
|
|
predict_x_start = False,
|
|
|
|
|
predict_x_start_for_latent_diffusion = False,
|
|
|
|
|
@@ -1624,6 +1682,8 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
clip_denoised = True,
|
|
|
|
|
clip_x_start = True,
|
|
|
|
|
clip_adapter_overrides = dict(),
|
|
|
|
|
learned_variance = True,
|
|
|
|
|
vb_loss_weight = 0.001,
|
|
|
|
|
unconditional = False
|
|
|
|
|
):
|
|
|
|
|
super().__init__(
|
|
|
|
|
@@ -1662,10 +1722,18 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
unets = cast_tuple(unet)
|
|
|
|
|
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
|
|
|
|
|
|
|
|
|
|
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper
|
|
|
|
|
|
|
|
|
|
learned_variance = pad_tuple_to_length(cast_tuple(learned_variance), len(unets), fillvalue = False)
|
|
|
|
|
self.learned_variance = learned_variance
|
|
|
|
|
self.vb_loss_weight = vb_loss_weight
|
|
|
|
|
|
|
|
|
|
# construct unets and vaes
|
|
|
|
|
|
|
|
|
|
self.unets = nn.ModuleList([])
|
|
|
|
|
self.vaes = nn.ModuleList([])
|
|
|
|
|
|
|
|
|
|
for ind, (one_unet, one_vae) in enumerate(zip(unets, vaes)):
|
|
|
|
|
for ind, (one_unet, one_vae, one_unet_learned_var) in enumerate(zip(unets, vaes, learned_variance)):
|
|
|
|
|
assert isinstance(one_unet, Unet)
|
|
|
|
|
assert isinstance(one_vae, (VQGanVAE, NullVQGanVAE))
|
|
|
|
|
|
|
|
|
|
@@ -1673,12 +1741,14 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
latent_dim = one_vae.encoded_dim if exists(one_vae) else None
|
|
|
|
|
|
|
|
|
|
unet_channels = default(latent_dim, self.channels)
|
|
|
|
|
unet_channels_out = unet_channels * (1 if not one_unet_learned_var else 2)
|
|
|
|
|
|
|
|
|
|
one_unet = one_unet.cast_model_parameters(
|
|
|
|
|
lowres_cond = not is_first,
|
|
|
|
|
cond_on_image_embeds = is_first and not unconditional,
|
|
|
|
|
cond_on_text_encodings = one_unet.cond_on_text_encodings and not unconditional,
|
|
|
|
|
channels = unet_channels
|
|
|
|
|
channels = unet_channels,
|
|
|
|
|
channels_out = unet_channels_out
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.unets.append(one_unet)
|
|
|
|
|
@@ -1741,8 +1811,11 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
yield
|
|
|
|
|
unet.cpu()
|
|
|
|
|
|
|
|
|
|
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
|
|
|
|
|
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
|
|
|
|
|
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
|
|
|
|
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img))
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
|
|
|
|
|
|
|
|
|
|
if predict_x_start:
|
|
|
|
|
x_recon = pred
|
|
|
|
|
@@ -1753,24 +1826,38 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
x_recon.clamp_(-1., 1.)
|
|
|
|
|
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
# if learned variance, posterio variance and posterior log variance are predicted by the network
|
|
|
|
|
# by an interpolation of the max and min log beta values
|
|
|
|
|
# eq 15 - https://arxiv.org/abs/2102.09672
|
|
|
|
|
min_log = extract(self.posterior_log_variance_clipped, t, x.shape)
|
|
|
|
|
max_log = extract(torch.log(self.betas), t, x.shape)
|
|
|
|
|
var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized)
|
|
|
|
|
|
|
|
|
|
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
|
|
|
|
|
posterior_variance = posterior_log_variance.exp()
|
|
|
|
|
|
|
|
|
|
return model_mean, posterior_variance, posterior_log_variance
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
|
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
|
|
|
|
|
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
|
|
|
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
|
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
|
|
|
|
noise = noise_like(x.shape, device, repeat_noise)
|
|
|
|
|
# no noise when t == 0
|
|
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
|
|
|
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
|
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
|
|
|
|
|
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
|
|
|
|
|
device = self.betas.device
|
|
|
|
|
|
|
|
|
|
b = shape[0]
|
|
|
|
|
img = torch.randn(shape, device = device)
|
|
|
|
|
|
|
|
|
|
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
|
|
|
|
|
|
|
|
|
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
|
|
|
|
img = self.p_sample(
|
|
|
|
|
unet,
|
|
|
|
|
@@ -1782,17 +1869,26 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
cond_scale = cond_scale,
|
|
|
|
|
lowres_cond_img = lowres_cond_img,
|
|
|
|
|
predict_x_start = predict_x_start,
|
|
|
|
|
learned_variance = learned_variance,
|
|
|
|
|
clip_denoised = clip_denoised
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
unnormalize_img = unnormalize_zero_to_one(img)
|
|
|
|
|
return unnormalize_img
|
|
|
|
|
|
|
|
|
|
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None):
|
|
|
|
|
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False):
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
|
|
|
|
|
|
|
|
# normalize to [-1, 1]
|
|
|
|
|
|
|
|
|
|
x_start = normalize_neg_one_to_one(x_start)
|
|
|
|
|
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
|
|
|
|
|
|
|
|
|
# get x_t
|
|
|
|
|
|
|
|
|
|
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
|
|
|
|
|
|
|
|
|
|
pred = unet(
|
|
|
|
|
model_output = unet(
|
|
|
|
|
x_noisy,
|
|
|
|
|
times,
|
|
|
|
|
image_embed = image_embed,
|
|
|
|
|
@@ -1803,10 +1899,48 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
text_cond_drop_prob = self.text_cond_drop_prob,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
pred, _ = model_output.chunk(2, dim = 1)
|
|
|
|
|
else:
|
|
|
|
|
pred = model_output
|
|
|
|
|
|
|
|
|
|
target = noise if not predict_x_start else x_start
|
|
|
|
|
|
|
|
|
|
loss = self.loss_fn(pred, target)
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
if not learned_variance:
|
|
|
|
|
# return simple loss if not using learned variance
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
# most of the code below is transcribed from
|
|
|
|
|
# https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/diffusion_utils_2.py
|
|
|
|
|
# the Improved DDPM paper then further modified it so that the mean is detached (shown a couple lines before), and weighted to be smaller than the l1 or l2 "simple" loss
|
|
|
|
|
# it is questionable whether this is really needed, looking at some of the figures in the paper, but may as well stay faithful to their implementation
|
|
|
|
|
|
|
|
|
|
# if learning the variance, also include the extra weight kl loss
|
|
|
|
|
|
|
|
|
|
true_mean, _, true_log_variance_clipped = self.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
|
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
|
|
|
|
|
|
|
|
|
|
# kl loss with detached model predicted mean, for stability reasons as in paper
|
|
|
|
|
|
|
|
|
|
detached_model_mean = model_mean.detach()
|
|
|
|
|
|
|
|
|
|
kl = normal_kl(true_mean, true_log_variance_clipped, detached_model_mean, model_log_variance)
|
|
|
|
|
kl = meanflat(kl) * NAT
|
|
|
|
|
|
|
|
|
|
decoder_nll = -discretized_gaussian_log_likelihood(x_start, means = detached_model_mean, log_scales = 0.5 * model_log_variance)
|
|
|
|
|
decoder_nll = meanflat(decoder_nll) * NAT
|
|
|
|
|
|
|
|
|
|
# at the first timestep return the decoder NLL, otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
|
|
|
|
|
|
|
|
|
vb_losses = torch.where(times == 0, decoder_nll, kl)
|
|
|
|
|
|
|
|
|
|
# weight the vb loss smaller, for stability, as in the paper (recommended 0.001)
|
|
|
|
|
|
|
|
|
|
vb_loss = vb_losses.mean() * self.vb_loss_weight
|
|
|
|
|
|
|
|
|
|
return loss + vb_loss
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
|
@eval_decorator
|
|
|
|
|
@@ -1833,7 +1967,7 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
img = None
|
|
|
|
|
is_cuda = next(self.parameters()).is_cuda
|
|
|
|
|
|
|
|
|
|
for unet_number, unet, vae, channel, image_size, predict_x_start in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
|
|
|
|
|
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance)):
|
|
|
|
|
|
|
|
|
|
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
|
|
|
|
|
|
|
|
|
|
@@ -1859,6 +1993,7 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
text_mask = text_mask,
|
|
|
|
|
cond_scale = cond_scale,
|
|
|
|
|
predict_x_start = predict_x_start,
|
|
|
|
|
learned_variance = learned_variance,
|
|
|
|
|
clip_denoised = not is_latent_diffusion,
|
|
|
|
|
lowres_cond_img = lowres_cond_img
|
|
|
|
|
)
|
|
|
|
|
@@ -1888,6 +2023,7 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
target_image_size = self.image_sizes[unet_index]
|
|
|
|
|
predict_x_start = self.predict_x_start[unet_index]
|
|
|
|
|
random_crop_size = self.random_crop_sizes[unet_index]
|
|
|
|
|
learned_variance = self.learned_variance[unet_index]
|
|
|
|
|
b, c, h, w, device, = *image.shape, image.device
|
|
|
|
|
|
|
|
|
|
check_shape(image, 'b c h w', c = self.channels)
|
|
|
|
|
@@ -1925,7 +2061,7 @@ class Decoder(BaseGaussianDiffusion):
|
|
|
|
|
if exists(lowres_cond_img):
|
|
|
|
|
lowres_cond_img = vae.encode(lowres_cond_img)
|
|
|
|
|
|
|
|
|
|
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start)
|
|
|
|
|
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
|
|
|
|
|
|
|
|
|
# main class
|
|
|
|
|
|
|
|
|
|
@@ -1975,4 +2111,3 @@ class DALLE2(nn.Module):
|
|
|
|
|
return images[0]
|
|
|
|
|
|
|
|
|
|
return images
|
|
|
|
|
|
|
|
|
|
|