mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 12:44:28 +01:00
Compare commits
9 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
924455d97d | ||
|
|
6021945fc8 | ||
|
|
6f76652d11 | ||
|
|
3dda2570ed | ||
|
|
2f3c02dba8 | ||
|
|
908088cfea | ||
|
|
8dc8a3de0d | ||
|
|
35f89556ba | ||
|
|
2b55f753b9 |
16
README.md
16
README.md
@@ -508,7 +508,7 @@ To use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it i
|
|||||||
import torch
|
import torch
|
||||||
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
|
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
|
||||||
|
|
||||||
# openai pretrained clip - defaults to ViT/B-32
|
# openai pretrained clip - defaults to ViT-B/32
|
||||||
|
|
||||||
clip = OpenAIClipAdapter()
|
clip = OpenAIClipAdapter()
|
||||||
|
|
||||||
@@ -1002,12 +1002,13 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [x] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
|
- [x] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
|
||||||
- [x] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
|
- [x] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
|
||||||
- [x] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
|
- [x] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
|
||||||
|
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
|
||||||
|
- [x] cross embed layers for downsampling, as an option
|
||||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||||
- [ ] train on a toy task, offer in colab
|
- [ ] train on a toy task, offer in colab
|
||||||
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
|
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
|
||||||
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
|
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
|
||||||
- [ ] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
|
|
||||||
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
|
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
|
||||||
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
|
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
|
||||||
- [ ] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
|
- [ ] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
|
||||||
@@ -1093,4 +1094,15 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@misc{wang2021crossformer,
|
||||||
|
title = {CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention},
|
||||||
|
author = {Wenxiao Wang and Lu Yao and Long Chen and Binbin Lin and Deng Cai and Xiaofei He and Wei Liu},
|
||||||
|
year = {2021},
|
||||||
|
eprint = {2108.00154},
|
||||||
|
archivePrefix = {arXiv},
|
||||||
|
primaryClass = {cs.CV}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||||
|
|||||||
@@ -303,7 +303,7 @@ def cosine_beta_schedule(timesteps, s = 0.008):
|
|||||||
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
||||||
"""
|
"""
|
||||||
steps = timesteps + 1
|
steps = timesteps + 1
|
||||||
x = torch.linspace(0, timesteps, steps)
|
x = torch.linspace(0, timesteps, steps, dtype = torch.float64)
|
||||||
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||||
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
||||||
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
||||||
@@ -314,21 +314,21 @@ def linear_beta_schedule(timesteps):
|
|||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
return torch.linspace(beta_start, beta_end, timesteps)
|
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
|
||||||
|
|
||||||
|
|
||||||
def quadratic_beta_schedule(timesteps):
|
def quadratic_beta_schedule(timesteps):
|
||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
return torch.linspace(beta_start**2, beta_end**2, timesteps) ** 2
|
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
|
||||||
|
|
||||||
|
|
||||||
def sigmoid_beta_schedule(timesteps):
|
def sigmoid_beta_schedule(timesteps):
|
||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
betas = torch.linspace(-6, 6, timesteps)
|
betas = torch.linspace(-6, 6, timesteps, dtype = torch.float64)
|
||||||
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||||
|
|
||||||
|
|
||||||
@@ -368,17 +368,21 @@ class BaseGaussianDiffusion(nn.Module):
|
|||||||
self.loss_type = loss_type
|
self.loss_type = loss_type
|
||||||
self.loss_fn = loss_fn
|
self.loss_fn = loss_fn
|
||||||
|
|
||||||
self.register_buffer('betas', betas)
|
# register buffer helper function to cast double back to float
|
||||||
self.register_buffer('alphas_cumprod', alphas_cumprod)
|
|
||||||
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
|
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
|
||||||
|
|
||||||
|
register_buffer('betas', betas)
|
||||||
|
register_buffer('alphas_cumprod', alphas_cumprod)
|
||||||
|
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
|
||||||
|
|
||||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||||
|
|
||||||
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
||||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
||||||
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
|
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
|
||||||
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
||||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
||||||
|
|
||||||
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||||||
|
|
||||||
@@ -386,13 +390,13 @@ class BaseGaussianDiffusion(nn.Module):
|
|||||||
|
|
||||||
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
||||||
|
|
||||||
self.register_buffer('posterior_variance', posterior_variance)
|
register_buffer('posterior_variance', posterior_variance)
|
||||||
|
|
||||||
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
||||||
|
|
||||||
self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
|
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
|
||||||
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
||||||
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
||||||
|
|
||||||
def q_mean_variance(self, x_start, t):
|
def q_mean_variance(self, x_start, t):
|
||||||
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||||
@@ -827,7 +831,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
|||||||
image_channels = 3,
|
image_channels = 3,
|
||||||
timesteps = 1000,
|
timesteps = 1000,
|
||||||
cond_drop_prob = 0.,
|
cond_drop_prob = 0.,
|
||||||
loss_type = "l1",
|
loss_type = "l2",
|
||||||
predict_x_start = True,
|
predict_x_start = True,
|
||||||
beta_schedule = "cosine",
|
beta_schedule = "cosine",
|
||||||
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
|
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
|
||||||
@@ -1228,6 +1232,33 @@ class LinearAttention(nn.Module):
|
|||||||
out = self.nonlin(out)
|
out = self.nonlin(out)
|
||||||
return self.to_out(out)
|
return self.to_out(out)
|
||||||
|
|
||||||
|
class CrossEmbedLayer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim_in,
|
||||||
|
kernel_sizes,
|
||||||
|
dim_out = None,
|
||||||
|
stride = 2
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
|
||||||
|
dim_out = default(dim_out, dim_in)
|
||||||
|
|
||||||
|
kernel_sizes = sorted(kernel_sizes)
|
||||||
|
num_scales = len(kernel_sizes)
|
||||||
|
|
||||||
|
# calculate the dimension at each scale
|
||||||
|
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
|
||||||
|
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
|
||||||
|
|
||||||
|
self.convs = nn.ModuleList([])
|
||||||
|
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
|
||||||
|
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
||||||
|
return torch.cat(fmaps, dim = 1)
|
||||||
|
|
||||||
class Unet(nn.Module):
|
class Unet(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -1252,6 +1283,9 @@ class Unet(nn.Module):
|
|||||||
init_dim = None,
|
init_dim = None,
|
||||||
init_conv_kernel_size = 7,
|
init_conv_kernel_size = 7,
|
||||||
resnet_groups = 8,
|
resnet_groups = 8,
|
||||||
|
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||||
|
cross_embed_downsample = False,
|
||||||
|
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -1270,10 +1304,9 @@ class Unet(nn.Module):
|
|||||||
self.channels = channels
|
self.channels = channels
|
||||||
|
|
||||||
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
||||||
init_dim = default(init_dim, dim // 2)
|
init_dim = default(init_dim, dim // 3 * 2)
|
||||||
|
|
||||||
assert (init_conv_kernel_size % 2) == 1
|
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
|
||||||
self.init_conv = nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
|
|
||||||
|
|
||||||
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
||||||
in_out = list(zip(dims[:-1], dims[1:]))
|
in_out = list(zip(dims[:-1], dims[1:]))
|
||||||
@@ -1333,6 +1366,12 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
assert len(resnet_groups) == len(in_out)
|
assert len(resnet_groups) == len(in_out)
|
||||||
|
|
||||||
|
# downsample klass
|
||||||
|
|
||||||
|
downsample_klass = Downsample
|
||||||
|
if cross_embed_downsample:
|
||||||
|
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
|
||||||
|
|
||||||
# layers
|
# layers
|
||||||
|
|
||||||
self.downs = nn.ModuleList([])
|
self.downs = nn.ModuleList([])
|
||||||
@@ -1348,7 +1387,7 @@ class Unet(nn.Module):
|
|||||||
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
||||||
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||||
ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||||
Downsample(dim_out) if not is_last else nn.Identity()
|
downsample_klass(dim_out) if not is_last else nn.Identity()
|
||||||
]))
|
]))
|
||||||
|
|
||||||
mid_dim = dims[-1]
|
mid_dim = dims[-1]
|
||||||
@@ -1453,11 +1492,12 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
if self.cond_on_image_embeds:
|
if self.cond_on_image_embeds:
|
||||||
image_tokens = self.image_to_cond(image_embed)
|
image_tokens = self.image_to_cond(image_embed)
|
||||||
|
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
|
||||||
|
|
||||||
image_tokens = torch.where(
|
image_tokens = torch.where(
|
||||||
image_keep_mask,
|
image_keep_mask,
|
||||||
image_tokens,
|
image_tokens,
|
||||||
self.null_image_embed
|
null_image_embed
|
||||||
)
|
)
|
||||||
|
|
||||||
# take care of text encodings (optional)
|
# take care of text encodings (optional)
|
||||||
@@ -1481,10 +1521,12 @@ class Unet(nn.Module):
|
|||||||
text_mask = rearrange(text_mask, 'b n -> b n 1')
|
text_mask = rearrange(text_mask, 'b n -> b n 1')
|
||||||
text_keep_mask = text_mask & text_keep_mask
|
text_keep_mask = text_mask & text_keep_mask
|
||||||
|
|
||||||
|
null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working
|
||||||
|
|
||||||
text_tokens = torch.where(
|
text_tokens = torch.where(
|
||||||
text_keep_mask,
|
text_keep_mask,
|
||||||
text_tokens,
|
text_tokens,
|
||||||
self.null_text_embed
|
null_text_embed
|
||||||
)
|
)
|
||||||
|
|
||||||
# main conditioning tokens (c)
|
# main conditioning tokens (c)
|
||||||
@@ -1572,7 +1614,7 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
timesteps = 1000,
|
timesteps = 1000,
|
||||||
image_cond_drop_prob = 0.1,
|
image_cond_drop_prob = 0.1,
|
||||||
text_cond_drop_prob = 0.5,
|
text_cond_drop_prob = 0.5,
|
||||||
loss_type = 'l1',
|
loss_type = 'l2',
|
||||||
beta_schedule = 'cosine',
|
beta_schedule = 'cosine',
|
||||||
predict_x_start = False,
|
predict_x_start = False,
|
||||||
predict_x_start_for_latent_diffusion = False,
|
predict_x_start_for_latent_diffusion = False,
|
||||||
|
|||||||
@@ -105,6 +105,10 @@ class EMA(nn.Module):
|
|||||||
self.register_buffer('initted', torch.Tensor([False]))
|
self.register_buffer('initted', torch.Tensor([False]))
|
||||||
self.register_buffer('step', torch.tensor([0.]))
|
self.register_buffer('step', torch.tensor([0.]))
|
||||||
|
|
||||||
|
def restore_ema_model_device(self):
|
||||||
|
device = self.initted.device
|
||||||
|
self.ema_model.to(device)
|
||||||
|
|
||||||
def update(self):
|
def update(self):
|
||||||
self.step += 1
|
self.step += 1
|
||||||
|
|
||||||
@@ -305,6 +309,11 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
if self.use_ema:
|
if self.use_ema:
|
||||||
self.decoder.unets = trainable_unets # restore original training unets
|
self.decoder.unets = trainable_unets # restore original training unets
|
||||||
|
|
||||||
|
# cast the ema_model unets back to original device
|
||||||
|
for ema in self.ema_unets:
|
||||||
|
ema.restore_ema_model_device()
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
|||||||
3
setup.py
3
setup.py
@@ -10,11 +10,12 @@ setup(
|
|||||||
'dream = dalle2_pytorch.cli:dream'
|
'dream = dalle2_pytorch.cli:dream'
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
version = '0.2.6',
|
version = '0.2.12',
|
||||||
license='MIT',
|
license='MIT',
|
||||||
description = 'DALL-E 2',
|
description = 'DALL-E 2',
|
||||||
author = 'Phil Wang',
|
author = 'Phil Wang',
|
||||||
author_email = 'lucidrains@gmail.com',
|
author_email = 'lucidrains@gmail.com',
|
||||||
|
long_description_content_type = 'text/markdown',
|
||||||
url = 'https://github.com/lucidrains/dalle2-pytorch',
|
url = 'https://github.com/lucidrains/dalle2-pytorch',
|
||||||
keywords = [
|
keywords = [
|
||||||
'artificial intelligence',
|
'artificial intelligence',
|
||||||
|
|||||||
Reference in New Issue
Block a user