Compare commits

...

33 Commits

Author SHA1 Message Date
Phil Wang
924455d97d align the ema model device back after sampling from the cascading ddpm in the decoder 2022-05-11 19:56:54 -07:00
Phil Wang
6021945fc8 default to l2 loss 2022-05-11 19:24:51 -07:00
Light-V
6f76652d11 fix typo in README.md (#85)
The default config for clip from openai should be ViT-B/32
2022-05-11 13:38:16 -07:00
Phil Wang
3dda2570ed fix amp issue for https://github.com/lucidrains/DALLE2-pytorch/issues/82 2022-05-11 08:21:39 -07:00
Phil Wang
2f3c02dba8 numerical accuracy for noise schedule parameters 2022-05-10 15:28:46 -07:00
Phil Wang
908088cfea wrap up cross embed layer feature 2022-05-10 12:19:34 -07:00
Phil Wang
8dc8a3de0d product management 2022-05-10 11:51:38 -07:00
Phil Wang
35f89556ba bring in the cross embed layer from Crossformer paper for initial convolution in unet 2022-05-10 11:50:38 -07:00
Phil Wang
2b55f753b9 fix new issue with github actions and auto pypi package uploading 2022-05-10 10:51:15 -07:00
Phil Wang
fc8fce38fb make sure cascading DDPM can be trained unconditionally, to ready for CLI one command training for the public 2022-05-10 10:48:10 -07:00
Phil Wang
a1bfb03ba4 project management 2022-05-10 10:13:51 -07:00
Phil Wang
b1e7b5f6bb make sure resnet groups in unet is finely customizable 2022-05-10 10:12:50 -07:00
z
10b905b445 smol typo (#81) 2022-05-10 09:52:50 -07:00
Phil Wang
9b322ea634 patch 2022-05-09 19:46:19 -07:00
Phil Wang
ba64ea45cc 0.2.3 2022-05-09 16:50:31 -07:00
Phil Wang
64f7be1926 some cleanup 2022-05-09 16:50:21 -07:00
Phil Wang
db805e73e1 fix a bug with numerical stability in attention, sorry! 🐛 2022-05-09 16:23:37 -07:00
z
cb07b37970 Ensure Eval Mode In Metric Functions (#79)
* add eval/train toggles

* train/eval flags

* shift train toggle

Co-authored-by: nousr <z@localhost.com>
2022-05-09 16:05:40 -07:00
Phil Wang
a774bfefe2 add attention and feedforward dropouts to train_diffusion_prior script 2022-05-09 13:57:15 -07:00
Phil Wang
2ae57f0cf5 cleanup 2022-05-09 13:51:26 -07:00
Phil Wang
e46eaec817 deal the diffusion prior problem yet another blow 2022-05-09 11:08:52 -07:00
Kumar R
8647cb5e76 Val loss changes, with quite a few other changes. This is in place of the earlier PR(https://github.com/lucidrains/DALLE2-pytorch/pull/67) (#77)
* Val_loss changes - no rebased with lucidrains' master.

* Val Loss changes - now rebased with lucidrains' master

* train_diffusion_prior.py updates

* dalle2_pytorch.py updates

* __init__.py changes

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2022-05-09 08:53:29 -07:00
Phil Wang
53c189e46a give more surface area for attention in diffusion prior 2022-05-09 08:08:11 -07:00
Phil Wang
dde51fd362 revert restriction for classifier free guidance for diffusion prior, given @crowsonkb advice 2022-05-07 20:55:41 -07:00
Nasir Khalid
2eac7996fa Additional image_embed metric (#75)
Added metric to track image_embed vs predicted_image_embed
2022-05-07 14:32:33 -07:00
Phil Wang
4010aec033 turn off classifier free guidance if predicting x_start for diffusion prior 2022-05-07 09:38:17 -07:00
Phil Wang
c87b84a259 todo 2022-05-07 09:21:08 -07:00
Phil Wang
8b05468653 todo 2022-05-07 08:33:45 -07:00
Phil Wang
830afd3c15 sinusoidal embed time embeddings for diffusion prior as well, for continuous version 2022-05-07 08:32:43 -07:00
Phil Wang
8f93729d19 when in doubt, make it a hyperparameter 2022-05-07 07:52:17 -07:00
z
cd5f2c1de4 simulate unrelated captions as a training metric (#66)
* add unrelated embedding metric

* change to torch.roll

Co-authored-by: nousr <z@localhost.com>
Co-authored-by: nousr <>
2022-05-07 05:34:59 -07:00
Phil Wang
85ed77d512 fix a potentially huge bug thanks to @CiaoHe https://github.com/lucidrains/DALLE2-pytorch/issues/71 2022-05-07 05:05:54 -07:00
Piero Rolando
fd53fa17db Fix a typo in README (#70)
Change "pyhon" for "python" (correct)
2022-05-06 16:53:36 -07:00
5 changed files with 377 additions and 119 deletions

View File

@@ -508,7 +508,7 @@ To use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it i
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
# openai pretrained clip - defaults to ViT/B-32
# openai pretrained clip - defaults to ViT-B/32
clip = OpenAIClipAdapter()
@@ -902,7 +902,7 @@ Please note that the script internally passes text_embed and image_embed to the
### Usage
```bash
$ pyhon train_diffusion_prior.py
$ python train_diffusion_prior.py
```
The most significant parameters for the script are as follows:
@@ -927,7 +927,39 @@ The most significant parameters for the script are as follows:
### Sample wandb run log
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/aul0rhv5?workspace=
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/1blxu24j
### Loading and saving the Diffusion Prior model
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
## from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model
load_diffusion_model(dprior_path, device)
dprior_path : path to saved model(.pth)
device : the cuda device you're running on
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
save_path : path to save at
model : object of Diffusion_Prior
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
scaler : a GradScaler object.
e.g: scaler = GradScaler(enabled=amp)
config : config object created in train_diffusion_prior.py - see file for example.
image_embed_dim - the dimension of the image_embedding
e.g: 768
## CLI (wip)
@@ -966,21 +998,25 @@ Once built, images will be saved to the same directory the command is invoked
- [x] add convnext backbone for vqgan-vae (in addition to vit [vit-vqgan] + resnet)
- [x] make sure DDPMs can be run with traditional resnet blocks (but leave convnext as an option for experimentation)
- [x] make sure for the latter unets in the cascade, one can train on crops for learning super resolution (constrain the unet to be only convolutions in that case, or allow conv-like attention with rel pos bias)
- [x] offer setting in diffusion prior to split time and image embeddings into multiple tokens, configurable, for more surface area during attention
- [x] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
- [x] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
- [x] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
- [x] cross embed layers for downsampling, as an option
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
## Citations
@@ -1058,4 +1094,15 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@misc{wang2021crossformer,
title = {CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention},
author = {Wenxiao Wang and Lu Yao and Long Chen and Binbin Lin and Deng Cai and Xiaofei He and Wei Liu},
year = {2021},
eprint = {2108.00154},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -4,6 +4,7 @@ from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
from pathlib import Path
import torch
import torch.nn.functional as F
@@ -302,7 +303,7 @@ def cosine_beta_schedule(timesteps, s = 0.008):
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
x = torch.linspace(0, timesteps, steps, dtype = torch.float64)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
@@ -313,21 +314,21 @@ def linear_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps)
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
def quadratic_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start**2, beta_end**2, timesteps) ** 2
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
def sigmoid_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
betas = torch.linspace(-6, 6, timesteps)
betas = torch.linspace(-6, 6, timesteps, dtype = torch.float64)
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
@@ -367,17 +368,21 @@ class BaseGaussianDiffusion(nn.Module):
self.loss_type = loss_type
self.loss_fn = loss_fn
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# register buffer helper function to cast double back to float
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
register_buffer('betas', betas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
@@ -385,13 +390,13 @@ class BaseGaussianDiffusion(nn.Module):
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', posterior_variance)
register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
@@ -639,7 +644,7 @@ class Attention(nn.Module):
# attention
sim = sim - sim.amax(dim = -1, keepdim = True)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
@@ -703,10 +708,31 @@ class DiffusionPriorNetwork(nn.Module):
self,
dim,
num_timesteps = None,
num_time_embeds = 1,
num_image_embeds = 1,
num_text_embeds = 1,
**kwargs
):
super().__init__()
self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(Rearrange('b -> b 1'), MLP(1, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.num_time_embeds = num_time_embeds
self.num_image_embeds = num_image_embeds
self.num_text_embeds = num_text_embeds
self.to_text_embeds = nn.Sequential(
nn.Linear(dim, dim * num_text_embeds) if num_text_embeds > 1 else nn.Identity(),
Rearrange('b (n d) -> b n d', n = num_text_embeds)
)
self.to_time_embeds = nn.Sequential(
nn.Embedding(num_timesteps, dim * num_time_embeds) if exists(num_timesteps) else nn.Sequential(SinusoidalPosEmb(dim), MLP(dim, dim * num_time_embeds)), # also offer a continuous version of timestep embeddings, with a 2 layer MLP
Rearrange('b (n d) -> b n d', n = num_time_embeds)
)
self.to_image_embeds = nn.Sequential(
nn.Linear(dim, dim * num_image_embeds) if num_image_embeds > 1 else nn.Identity(),
Rearrange('b (n d) -> b n d', n = num_image_embeds)
)
self.learned_query = nn.Parameter(torch.randn(dim))
self.causal_transformer = CausalTransformer(dim = dim, **kwargs)
@@ -736,10 +762,13 @@ class DiffusionPriorNetwork(nn.Module):
):
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds
# in section 2.2, last paragraph
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d')
text_embed = self.to_text_embeds(text_embed)
image_embed = self.to_image_embeds(image_embed)
# make text encodings optional
# although the paper seems to suggest it is present <--
@@ -759,16 +788,17 @@ class DiffusionPriorNetwork(nn.Module):
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
keep_mask = repeat(keep_mask, 'b 1 -> b n', n = num_text_embeds)
mask = torch.cat((mask, keep_mask), dim = 1)
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right
if exists(mask):
mask = F.pad(mask, (0, 2), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
attend_padding = 1 + num_time_embeds + num_image_embeds # 1 for learned queries + number of image embeds + time embeds
mask = F.pad(mask, (0, attend_padding), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.time_embeddings(diffusion_timesteps)
time_embed = rearrange(time_embed, 'b d -> b 1 d')
time_embed = self.to_time_embeds(diffusion_timesteps)
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
@@ -776,6 +806,7 @@ class DiffusionPriorNetwork(nn.Module):
text_encodings,
text_embed,
time_embed,
image_embed,
learned_queries
), dim = -2)
@@ -799,13 +830,14 @@ class DiffusionPrior(BaseGaussianDiffusion):
image_size = None,
image_channels = 3,
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = "l1",
cond_drop_prob = 0.,
loss_type = "l2",
predict_x_start = True,
beta_schedule = "cosine",
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
sampling_clamp_l2norm = False,
training_clamp_l2norm = False,
init_image_embed_l2norm = False,
image_embed_scale = None, # this is for scaling the l2-normed image embedding, so it is more suitable for gaussian diffusion, as outlined by Katherine (@crowsonkb) https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
clip_adapter_overrides = dict()
):
@@ -844,6 +876,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# whether to force an l2norm, similar to clipping denoised, when sampling
self.sampling_clamp_l2norm = sampling_clamp_l2norm
self.training_clamp_l2norm = training_clamp_l2norm
self.init_image_embed_l2norm = init_image_embed_l2norm
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
@@ -878,11 +911,16 @@ class DiffusionPrior(BaseGaussianDiffusion):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
image_embed = torch.randn(shape, device=device)
if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), text_cond = text_cond)
return img
times = torch.full((b,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond)
return image_embed
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
@@ -1133,7 +1171,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
@@ -1194,6 +1232,33 @@ class LinearAttention(nn.Module):
out = self.nonlin(out)
return self.to_out(out)
class CrossEmbedLayer(nn.Module):
def __init__(
self,
dim_in,
kernel_sizes,
dim_out = None,
stride = 2
):
super().__init__()
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
dim_out = default(dim_out, dim_in)
kernel_sizes = sorted(kernel_sizes)
num_scales = len(kernel_sizes)
# calculate the dimension at each scale
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
self.convs = nn.ModuleList([])
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
def forward(self, x):
fmaps = tuple(map(lambda conv: conv(x), self.convs))
return torch.cat(fmaps, dim = 1)
class Unet(nn.Module):
def __init__(
self,
@@ -1217,8 +1282,10 @@ class Unet(nn.Module):
cond_on_image_embeds = False,
init_dim = None,
init_conv_kernel_size = 7,
block_type = 'resnet',
block_resnet_groups = 8,
resnet_groups = 8,
init_cross_embed_kernel_sizes = (3, 7, 15),
cross_embed_downsample = False,
cross_embed_downsample_kernel_sizes = (2, 4),
**kwargs
):
super().__init__()
@@ -1237,10 +1304,9 @@ class Unet(nn.Module):
self.channels = channels
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
init_dim = default(init_dim, dim // 2)
init_dim = default(init_dim, dim // 3 * 2)
assert (init_conv_kernel_size % 2) == 1
self.init_conv = nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
@@ -1296,7 +1362,15 @@ class Unet(nn.Module):
# resnet block klass
block_klass = partial(ResnetBlock, groups = block_resnet_groups)
resnet_groups = cast_tuple(resnet_groups, len(in_out))
assert len(resnet_groups) == len(in_out)
# downsample klass
downsample_klass = Downsample
if cross_embed_downsample:
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
# layers
@@ -1304,38 +1378,39 @@ class Unet(nn.Module):
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):
for ind, ((dim_in, dim_out), groups) in enumerate(zip(in_out, resnet_groups)):
is_first = ind == 0
is_last = ind >= (num_resolutions - 1)
layer_cond_dim = cond_dim if not is_first else None
self.downs.append(nn.ModuleList([
block_klass(dim_in, dim_out, time_cond_dim = time_cond_dim),
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
block_klass(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim),
Downsample(dim_out) if not is_last else nn.Identity()
ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
downsample_klass(dim_out) if not is_last else nn.Identity()
]))
mid_dim = dims[-1]
self.mid_block1 = block_klass(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim)
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
self.mid_block2 = block_klass(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim)
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
for ind, ((dim_in, dim_out), groups) in enumerate(zip(reversed(in_out[1:]), reversed(resnet_groups))):
is_last = ind >= (num_resolutions - 2)
layer_cond_dim = cond_dim if not is_last else None
self.ups.append(nn.ModuleList([
block_klass(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim),
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
block_klass(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim),
ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Upsample(dim_in)
]))
out_dim = default(out_dim, channels)
self.final_conv = nn.Sequential(
block_klass(dim, dim),
ResnetBlock(dim, dim, groups = resnet_groups[0]),
nn.Conv2d(dim, out_dim, 1)
)
@@ -1346,12 +1421,13 @@ class Unet(nn.Module):
*,
lowres_cond,
channels,
cond_on_image_embeds
cond_on_image_embeds,
cond_on_text_encodings
):
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds:
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds and cond_on_text_encodings == self.cond_on_text_encodings:
return self
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds}
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds, 'cond_on_text_encodings': cond_on_text_encodings}
return self.__class__(**{**self._locals, **updated_kwargs})
def forward_with_cond_scale(
@@ -1416,11 +1492,12 @@ class Unet(nn.Module):
if self.cond_on_image_embeds:
image_tokens = self.image_to_cond(image_embed)
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
image_tokens = torch.where(
image_keep_mask,
image_tokens,
self.null_image_embed
null_image_embed
)
# take care of text encodings (optional)
@@ -1444,10 +1521,12 @@ class Unet(nn.Module):
text_mask = rearrange(text_mask, 'b n -> b n 1')
text_keep_mask = text_mask & text_keep_mask
null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working
text_tokens = torch.where(
text_keep_mask,
text_tokens,
self.null_text_embed
null_text_embed
)
# main conditioning tokens (c)
@@ -1535,7 +1614,7 @@ class Decoder(BaseGaussianDiffusion):
timesteps = 1000,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
loss_type = 'l1',
loss_type = 'l2',
beta_schedule = 'cosine',
predict_x_start = False,
predict_x_start_for_latent_diffusion = False,
@@ -1547,7 +1626,8 @@ class Decoder(BaseGaussianDiffusion):
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
clip_denoised = True,
clip_x_start = True,
clip_adapter_overrides = dict()
clip_adapter_overrides = dict(),
unconditional = False
):
super().__init__(
beta_schedule = beta_schedule,
@@ -1555,6 +1635,9 @@ class Decoder(BaseGaussianDiffusion):
loss_type = loss_type
)
self.unconditional = unconditional
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
assert exists(clip) ^ exists(image_size), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
self.clip = None
@@ -1596,7 +1679,8 @@ class Decoder(BaseGaussianDiffusion):
one_unet = one_unet.cast_model_parameters(
lowres_cond = not is_first,
cond_on_image_embeds = is_first,
cond_on_image_embeds = is_first and not unconditional,
cond_on_text_encodings = one_unet.cond_on_text_encodings and not unconditional,
channels = unet_channels
)
@@ -1731,12 +1815,16 @@ class Decoder(BaseGaussianDiffusion):
@eval_decorator
def sample(
self,
image_embed,
image_embed = None,
text = None,
batch_size = 1,
cond_scale = 1.,
stop_at_unet_number = None
):
batch_size = image_embed.shape[0]
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
if not self.unconditional:
batch_size = image_embed.shape[0]
text_encodings = text_mask = None
if exists(text):
@@ -1746,10 +1834,11 @@ class Decoder(BaseGaussianDiffusion):
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
img = None
is_cuda = next(self.parameters()).is_cuda
for unet_number, unet, vae, channel, image_size, predict_x_start in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
context = self.one_unet_in_gpu(unet = unet) if image_embed.is_cuda else null_context()
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
with context:
lowres_cond_img = None
@@ -1889,3 +1978,4 @@ class DALLE2(nn.Module):
return images[0]
return images

View File

@@ -1,3 +1,4 @@
import time
import copy
from functools import partial
@@ -39,6 +40,50 @@ def groupby_prefix_and_trim(prefix, d):
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
def load_diffusion_model(dprior_path, device):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print_ribbon('Saving checkpoint')
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# exponential moving average wrapper
class EMA(nn.Module):
@@ -60,6 +105,10 @@ class EMA(nn.Module):
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def update(self):
self.step += 1
@@ -260,6 +309,11 @@ class DecoderTrainer(nn.Module):
if self.use_ema:
self.decoder.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
ema.restore_ema_model_device()
return output
def forward(

View File

@@ -10,11 +10,12 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.1.5',
version = '0.2.12',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/dalle2-pytorch',
keywords = [
'artificial intelligence',

View File

@@ -7,6 +7,7 @@ import torch
from torch import nn
from embedding_reader import EmbeddingReader
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.optimizer import get_optimizer
from torch.cuda.amp import autocast,GradScaler
@@ -41,37 +42,56 @@ def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_t
avg_loss = (total_loss / total_samples)
wandb.log({f'{phase} {loss_type}': avg_loss})
def save_model(save_path, state_dict):
# Saving State Dict
print("====================================== Saving checkpoint ======================================")
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,NUM_TEST_EMBEDDINGS,device):
diffusion_prior.eval()
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,val_set_size,NUM_TEST_EMBEDDINGS,device):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
tstart = train_set_size+val_set_size
tend = train_set_size+val_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size = NUM_TEST_EMBEDDINGS, start=tstart, end = tend),image_reader(batch_size = NUM_TEST_EMBEDDINGS, start=tstart, end = tend)):
text_embed = torch.tensor(embt[0]).to(device)
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed = text_embed)
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / test_image_embeddings.norm(dim=1, keepdim=True)
predicted_image_embeddings = diffusion_prior.p_sample_loop((NUM_TEST_EMBEDDINGS, 768), text_cond = test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / predicted_image_embeddings.norm(dim=1, keepdim=True)
original_similarity = cos(text_embed,test_image_embeddings).cpu().numpy()
predicted_similarity = cos(text_embed,predicted_image_embeddings).cpu().numpy()
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity)})
wandb.log({"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity)})
return np.mean(predicted_similarity - original_similarity)
tstart = train_set_size
tend = train_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend),
image_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend)):
# make a copy of the text embeddings for shuffling
text_embed = torch.tensor(embt[0]).to(device)
text_embed_shuffled = text_embed.clone()
# roll the text embeddings to simulate "unrelated" captions
rolled_idx = torch.roll(torch.arange(NUM_TEST_EMBEDDINGS), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
test_text_shuffled_cond = dict(text_embed=text_embed_shuffled)
# prepare the text embedding
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed=text_embed)
# prepare image embeddings
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
# predict on the unshuffled text embeddings
predicted_image_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
# predict on the shuffled embeddings
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_shuffled_cond)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
# calculate similarities
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
def train(image_embed_dim,
image_embed_url,
@@ -93,9 +113,15 @@ def train(image_embed_dim,
save_interval,
save_path,
device,
RESUME,
DPRIOR_PATH,
config,
wandb_entity,
wandb_project,
learning_rate=0.001,
max_grad_norm=0.5,
weight_decay=0.01,
dropout=0.05,
amp=False):
# DiffusionPriorNetwork
@@ -104,6 +130,8 @@ def train(image_embed_dim,
depth = dpn_depth,
dim_head = dpn_dim_head,
heads = dpn_heads,
attn_dropout = dropout,
ff_dropout = dropout,
normformer = dp_normformer).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
@@ -116,16 +144,21 @@ def train(image_embed_dim,
loss_type = dp_loss_type,
condition_on_text_encodings = dp_condition_on_text_encodings).to(device)
# Get image and text embeddings from the servers
print("==============Downloading embeddings - image and text====================")
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
num_data_points = text_reader.count
# Load pre-trained model from DPRIOR_PATH
if RESUME:
diffusion_prior=load_diffusion_model(DPRIOR_PATH,device)
wandb.init( entity=wandb_entity, project=wandb_project, config=config)
# Create save_path if it doesn't exist
if not os.path.exists(save_path):
os.makedirs(save_path)
# Get image and text embeddings from the servers
print_ribbon("Downloading embeddings - image and text")
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
num_data_points = text_reader.count
### Training code ###
scaler = GradScaler(enabled=amp)
optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
@@ -136,12 +169,15 @@ def train(image_embed_dim,
train_set_size = int(train_percent*num_data_points)
val_set_size = int(val_percent*num_data_points)
eval_start = train_set_size
for _ in range(epochs):
diffusion_prior.train()
for emb_images,emb_text in zip(image_reader(batch_size=batch_size, start=0, end=train_set_size),
text_reader(batch_size=batch_size, start=0, end=train_set_size)):
diffusion_prior.train()
emb_images_tensor = torch.tensor(emb_images[0]).to(device)
emb_text_tensor = torch.tensor(emb_text[0]).to(device)
@@ -156,9 +192,13 @@ def train(image_embed_dim,
if(int(time.time()-t) >= 60*save_interval):
t = time.time()
save_model(
save_diffusion_model(
save_path,
dict(model=diffusion_prior.state_dict(), optimizer=optimizer.state_dict(), scaler=scaler.state_dict()))
diffusion_prior,
optimizer,
scaler,
config,
image_embed_dim)
# Log to wandb
wandb.log({"Training loss": loss.item(),
@@ -168,14 +208,22 @@ def train(image_embed_dim,
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
diff_cosine_sim = report_cosine_sims(diffusion_prior,
report_cosine_sims(diffusion_prior,
image_reader,
text_reader,
train_set_size,
val_set_size,
NUM_TEST_EMBEDDINGS,
device)
wandb.log({"Cosine similarity difference": diff_cosine_sim})
### Evaluate model(validation run) ###
eval_model(diffusion_prior,
device,
image_reader,
text_reader,
eval_start,
eval_start+NUM_TEST_EMBEDDINGS,
NUM_TEST_EMBEDDINGS,
dp_loss_type,
phase="Validation")
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(diffusion_prior.parameters(), max_grad_norm)
@@ -184,11 +232,6 @@ def train(image_embed_dim,
scaler.update()
optimizer.zero_grad()
### Evaluate model(validation run) ###
start = train_set_size
end=start+val_set_size
eval_model(diffusion_prior,device,image_reader,text_reader,start,end,batch_size,dp_loss_type,phase="Validation")
### Test run ###
test_set_size = int(test_percent*train_set_size)
start=train_set_size+val_set_size
@@ -200,7 +243,6 @@ def main():
# Logging
parser.add_argument("--wandb-entity", type=str, default="laion")
parser.add_argument("--wandb-project", type=str, default="diffusion-prior")
parser.add_argument("--wandb-name", type=str, default="laion-dprior")
parser.add_argument("--wandb-dataset", type=str, default="LAION-5B")
parser.add_argument("--wandb-arch", type=str, default="DiffusionPrior")
# URLs for embeddings
@@ -209,6 +251,7 @@ def main():
# Hyperparameters
parser.add_argument("--learning-rate", type=float, default=1.1e-4)
parser.add_argument("--weight-decay", type=float, default=6.02e-2)
parser.add_argument("--dropout", type=float, default=5e-2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--batch-size", type=int, default=10**4)
parser.add_argument("--num-epochs", type=int, default=5)
@@ -226,7 +269,6 @@ def main():
# DiffusionPrior(dp) parameters
parser.add_argument("--dp-condition-on-text-encodings", type=bool, default=False)
parser.add_argument("--dp-timesteps", type=int, default=100)
parser.add_argument("--dp-l2norm-output", type=bool, default=False)
parser.add_argument("--dp-normformer", type=bool, default=False)
parser.add_argument("--dp-cond-drop-prob", type=float, default=0.1)
parser.add_argument("--dp-loss-type", type=str, default="l2")
@@ -235,22 +277,40 @@ def main():
# Model checkpointing interval(minutes)
parser.add_argument("--save-interval", type=int, default=30)
parser.add_argument("--save-path", type=str, default="./diffusion_prior_checkpoints")
# Saved model path
parser.add_argument("--pretrained-model-path", type=str, default=None)
args = parser.parse_args()
print("Setting up wandb logging... Please wait...")
config = ({"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"weight_decay":args.weight_decay,
"max_gradient_clipping_norm":args.max_grad_norm,
"batch_size":args.batch_size,
"epochs": args.num_epochs,
"diffusion_prior_network":{"depth":args.dpn_depth,
"dim_head":args.dpn_dim_head,
"heads":args.dpn_heads,
"normformer":args.dp_normformer},
"diffusion_prior":{"condition_on_text_encodings": args.dp_condition_on_text_encodings,
"timesteps": args.dp_timesteps,
"cond_drop_prob":args.dp_cond_drop_prob,
"loss_type":args.dp_loss_type,
"clip":args.clip}
})
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config={
"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"epochs": args.num_epochs,
})
RESUME = False
# Check if DPRIOR_PATH exists(saved model path)
DPRIOR_PATH = args.pretrained_model_path
if(DPRIOR_PATH is not None):
RESUME = True
else:
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config=config)
print("wandb logging setup done!")
# Obtain the utilized device.
has_cuda = torch.cuda.is_available()
@@ -279,9 +339,15 @@ def main():
args.save_interval,
args.save_path,
device,
RESUME,
DPRIOR_PATH,
config,
args.wandb_entity,
args.wandb_project,
args.learning_rate,
args.max_grad_norm,
args.weight_decay,
args.dropout,
args.amp)
if __name__ == "__main__":