Compare commits

..

7 Commits

Author SHA1 Message Date
Phil Wang
db0642c4cd quick fix for @marunine 2022-05-18 20:22:52 -07:00
Phil Wang
bb86ab2404 update sample, and set default gradient clipping value for decoder training 2022-05-16 17:38:30 -07:00
Phil Wang
ae056dd67c samples 2022-05-16 13:46:35 -07:00
Phil Wang
033d6b0ce8 last update 2022-05-16 13:38:33 -07:00
Phil Wang
c7ea8748db default decoder learning rate to what was in the paper 2022-05-16 13:33:54 -07:00
Phil Wang
13382885d9 final update to dalle2 repository for a while - sampling from prior in chunks automatically with max_batch_size keyword given 2022-05-16 12:57:31 -07:00
Phil Wang
c3d4a7ffe4 update working unconditional decoder example 2022-05-16 12:50:07 -07:00
6 changed files with 44 additions and 19 deletions

View File

@@ -18,7 +18,11 @@ There was enough interest for a <a href="https://github.com/lucidrains/dalle2-ja
- A research group has used the code in this repository to train a functional diffusion prior for their CLIP generations. Will share their work once they release their preprint. This, and <a href="https://github.com/crowsonkb">Katherine's</a> own experiments, validate OpenAI's finding that the extra prior increases variety of generations.
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers. 2 researchers have also confirmed Decoder is working for them.
<img src="./samples/oxford.png" width="600px" />
*ongoing at 21k steps*
## Install
@@ -820,8 +824,8 @@ clip = CLIP(
# mock data
text = torch.randint(0, 49408, (32, 256)).cuda()
images = torch.randn(32, 3, 256, 256).cuda()
text = torch.randint(0, 49408, (512, 256)).cuda()
images = torch.randn(512, 3, 256, 256).cuda()
# prior networks (with transformer)
@@ -854,7 +858,7 @@ diffusion_prior_trainer.update() # this will update the optimizer as well as th
# after much of the above three lines in a loop
# you can sample from the exponential moving average of the diffusion prior identically to how you do so for DiffusionPrior
image_embeds = diffusion_prior_trainer.sample(text) # (4, 512) - exponential moving averaged image embeddings
image_embeds = diffusion_prior_trainer.sample(text, max_batch_size = 4) # (512, 512) - exponential moving averaged image embeddings
```
## Bonus
@@ -867,7 +871,7 @@ ex.
```python
import torch
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch import Unet, Decoder, DecoderTrainer
# unet for the cascading ddpm
@@ -890,20 +894,24 @@ decoder = Decoder(
unconditional = True
).cuda()
# mock images (get a lot of this)
# decoder trainer
decoder_trainer = DecoderTrainer(decoder)
# images (get a lot of this)
images = torch.randn(1, 3, 512, 512).cuda()
# feed images into decoder
for i in (1, 2):
loss = decoder(images, unet_number = i)
loss.backward()
loss = decoder_trainer(images, unet_number = i)
decoder_trainer.update(unet_number = i)
# do the above for many many many many steps
# do the above for many many many many images
# then it will learn to generate images
images = decoder.sample(batch_size = 2) # (2, 3, 512, 512)
images = decoder_trainer.sample(batch_size = 36, max_batch_size = 4) # (36, 3, 512, 512)
```
## Dataloaders

View File

@@ -1697,7 +1697,8 @@ class Decoder(BaseGaussianDiffusion):
clip_adapter_overrides = dict(),
learned_variance = True,
vb_loss_weight = 0.001,
unconditional = False
unconditional = False,
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
):
super().__init__(
beta_schedule = beta_schedule,
@@ -1806,6 +1807,10 @@ class Decoder(BaseGaussianDiffusion):
self.clip_denoised = clip_denoised
self.clip_x_start = clip_x_start
# normalize and unnormalize image functions
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
@@ -1877,7 +1882,7 @@ class Decoder(BaseGaussianDiffusion):
img = torch.randn(shape, device = device)
if not is_latent_diffusion:
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img = self.p_sample(
@@ -1894,7 +1899,7 @@ class Decoder(BaseGaussianDiffusion):
clip_denoised = clip_denoised
)
unnormalize_img = unnormalize_zero_to_one(img)
unnormalize_img = self.unnormalize_img(img)
return unnormalize_img
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
@@ -1903,8 +1908,8 @@ class Decoder(BaseGaussianDiffusion):
# normalize to [-1, 1]
if not is_latent_diffusion:
x_start = normalize_neg_one_to_one(x_start)
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
x_start = self.normalize_img(x_start)
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
# get x_t

View File

@@ -7,7 +7,7 @@ def separate_weight_decayable_params(params):
def get_optimizer(
params,
lr = 2e-5,
lr = 1e-4,
wd = 1e-2,
betas = (0.9, 0.999),
eps = 1e-8,

View File

@@ -235,6 +235,16 @@ class EMA(nn.Module):
# diffusion prior trainer
def prior_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
return torch.cat(outputs, dim = 0)
return inner
class DiffusionPriorTrainer(nn.Module):
def __init__(
self,
@@ -295,11 +305,13 @@ class DiffusionPriorTrainer(nn.Module):
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def p_sample_loop(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def sample(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
@@ -351,10 +363,10 @@ class DecoderTrainer(nn.Module):
self,
decoder,
use_ema = True,
lr = 2e-5,
lr = 1e-4,
wd = 1e-2,
eps = 1e-8,
max_grad_norm = None,
max_grad_norm = 0.5,
amp = False,
**kwargs
):

BIN
samples/oxford.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 985 KiB

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.2.46',
version = '0.3.3',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',