mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
89ff04cfe2 | ||
|
|
f4016f6302 | ||
|
|
1212f7058d | ||
|
|
dab106d4e5 |
@@ -61,6 +61,9 @@ def default(val, d):
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
def module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
@contextmanager
|
||||
def null_context(*args, **kwargs):
|
||||
yield
|
||||
@@ -936,7 +939,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
|
||||
@@ -945,7 +948,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
|
||||
@@ -981,7 +984,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
loss = self.loss_fn(pred, target)
|
||||
return loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample_batch_size(self, batch_size, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
@@ -993,7 +996,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
|
||||
return img
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(self, text, num_samples_per_batch = 2, cond_scale = 1.):
|
||||
# in the paper, what they did was
|
||||
@@ -1816,11 +1819,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
self.cuda()
|
||||
self.unets.cpu()
|
||||
|
||||
devices = [module_device(unet) for unet in self.unets]
|
||||
self.unets.cpu()
|
||||
unet.cuda()
|
||||
|
||||
yield
|
||||
unet.cpu()
|
||||
|
||||
for unet, device in zip(self.unets, devices):
|
||||
unet.to(device)
|
||||
|
||||
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||
@@ -1853,7 +1860,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
@@ -1862,14 +1869,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
|
||||
device = self.betas.device
|
||||
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
img = self.p_sample(
|
||||
@@ -1889,13 +1897,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unnormalize_img = unnormalize_zero_to_one(img)
|
||||
return unnormalize_img
|
||||
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False):
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
|
||||
# normalize to [-1, 1]
|
||||
|
||||
x_start = normalize_neg_one_to_one(x_start)
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
if not is_latent_diffusion:
|
||||
x_start = normalize_neg_one_to_one(x_start)
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
|
||||
# get x_t
|
||||
|
||||
@@ -1955,12 +1964,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return loss + vb_loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(
|
||||
self,
|
||||
image_embed = None,
|
||||
text = None,
|
||||
text_mask = None,
|
||||
text_encodings = None,
|
||||
batch_size = 1,
|
||||
cond_scale = 1.,
|
||||
stop_at_unet_number = None
|
||||
@@ -1970,8 +1981,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
if not self.unconditional:
|
||||
batch_size = image_embed.shape[0]
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text):
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip)
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
|
||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||
@@ -2007,7 +2018,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
predict_x_start = predict_x_start,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = not is_latent_diffusion,
|
||||
lowres_cond_img = lowres_cond_img
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
is_latent_diffusion = is_latent_diffusion
|
||||
)
|
||||
|
||||
img = vae.decode(img)
|
||||
@@ -2023,6 +2035,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
text = None,
|
||||
image_embed = None,
|
||||
text_encodings = None,
|
||||
text_mask = None,
|
||||
unet_number = None
|
||||
):
|
||||
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
||||
@@ -2047,7 +2060,6 @@ class Decoder(BaseGaussianDiffusion):
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder'
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
@@ -2066,12 +2078,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
image = aug(image)
|
||||
lowres_cond_img = aug(lowres_cond_img, params = aug._params)
|
||||
|
||||
is_latent_diffusion = not isinstance(vae, NullVQGanVAE)
|
||||
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
image = vae.encode(image)
|
||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion)
|
||||
|
||||
# main class
|
||||
|
||||
@@ -2094,7 +2108,7 @@ class DALLE2(nn.Module):
|
||||
|
||||
self.to_pil = T.ToPILImage()
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def forward(
|
||||
self,
|
||||
@@ -2103,7 +2117,7 @@ class DALLE2(nn.Module):
|
||||
prior_cond_scale = 1.,
|
||||
return_pil_images = False
|
||||
):
|
||||
device = next(self.parameters()).device
|
||||
device = module_device(self)
|
||||
one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1)
|
||||
|
||||
if isinstance(text, str) or is_list_str(text):
|
||||
|
||||
59
dalle2_pytorch/dataloaders/simple_image_only_dataloader.py
Normal file
59
dalle2_pytorch/dataloaders/simple_image_only_dataloader.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torch.utils import data
|
||||
from torchvision import transforms, utils
|
||||
|
||||
from PIL import Image
|
||||
|
||||
# helpers functions
|
||||
|
||||
def cycle(dl):
|
||||
while True:
|
||||
for data in dl:
|
||||
yield data
|
||||
|
||||
# dataset and dataloader
|
||||
|
||||
class Dataset(data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
folder,
|
||||
image_size,
|
||||
exts = ['jpg', 'jpeg', 'png']
|
||||
):
|
||||
super().__init__()
|
||||
self.folder = folder
|
||||
self.image_size = image_size
|
||||
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
|
||||
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Resize(image_size),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.CenterCrop(image_size),
|
||||
transforms.ToTensor()
|
||||
])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.paths)
|
||||
|
||||
def __getitem__(self, index):
|
||||
path = self.paths[index]
|
||||
img = Image.open(path)
|
||||
return self.transform(img)
|
||||
|
||||
def get_images_dataloader(
|
||||
folder,
|
||||
*,
|
||||
batch_size,
|
||||
image_size,
|
||||
shuffle = True,
|
||||
cycle_dl = True,
|
||||
pin_memory = True
|
||||
):
|
||||
ds = Dataset(folder, image_size)
|
||||
dl = data.DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory)
|
||||
|
||||
if cycle_dl:
|
||||
dl = cycle(dl)
|
||||
return dl
|
||||
@@ -179,8 +179,8 @@ class EMA(nn.Module):
|
||||
self.online_model = model
|
||||
self.ema_model = copy.deepcopy(model)
|
||||
|
||||
self.update_after_step = update_after_step # only start EMA after this step number, starting at 0
|
||||
self.update_every = update_every
|
||||
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([False]))
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
@@ -189,14 +189,21 @@ class EMA(nn.Module):
|
||||
device = self.initted.device
|
||||
self.ema_model.to(device)
|
||||
|
||||
def copy_params_from_model_to_ema(self):
|
||||
self.ema_model.state_dict(self.online_model.state_dict())
|
||||
|
||||
def update(self):
|
||||
self.step += 1
|
||||
|
||||
if self.step <= self.update_after_step or (self.step % self.update_every) != 0:
|
||||
if (self.step % self.update_every) != 0:
|
||||
return
|
||||
|
||||
if self.step <= self.update_after_step:
|
||||
self.copy_params_from_model_to_ema()
|
||||
return
|
||||
|
||||
if not self.initted:
|
||||
self.ema_model.state_dict(self.online_model.state_dict())
|
||||
self.copy_params_from_model_to_ema()
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
self.update_moving_average(self.ema_model, self.online_model)
|
||||
@@ -278,17 +285,17 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.step += 1
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
def p_sample_loop(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
def sample(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def sample_batch_size(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
|
||||
|
||||
@@ -405,6 +412,9 @@ class DecoderTrainer(nn.Module):
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
def sample(self, *args, **kwargs):
|
||||
if kwargs.pop('use_non_ema', False):
|
||||
return self.decoder.sample(*args, **kwargs)
|
||||
|
||||
if self.use_ema:
|
||||
trainable_unets = self.decoder.unets
|
||||
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
|
||||
Reference in New Issue
Block a user