mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
13 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
db0642c4cd | ||
|
|
bb86ab2404 | ||
|
|
ae056dd67c | ||
|
|
033d6b0ce8 | ||
|
|
c7ea8748db | ||
|
|
13382885d9 | ||
|
|
c3d4a7ffe4 | ||
|
|
164d9be444 | ||
|
|
5562ec6be2 | ||
|
|
89ff04cfe2 | ||
|
|
f4016f6302 | ||
|
|
1212f7058d | ||
|
|
dab106d4e5 |
32
README.md
32
README.md
@@ -14,6 +14,16 @@ Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord
|
||||
|
||||
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
|
||||
|
||||
## Status
|
||||
|
||||
- A research group has used the code in this repository to train a functional diffusion prior for their CLIP generations. Will share their work once they release their preprint. This, and <a href="https://github.com/crowsonkb">Katherine's</a> own experiments, validate OpenAI's finding that the extra prior increases variety of generations.
|
||||
|
||||
- Decoder is now verified working for unconditional generation on my experimental setup for Oxford flowers. 2 researchers have also confirmed Decoder is working for them.
|
||||
|
||||
<img src="./samples/oxford.png" width="600px" />
|
||||
|
||||
*ongoing at 21k steps*
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
@@ -814,8 +824,8 @@ clip = CLIP(
|
||||
|
||||
# mock data
|
||||
|
||||
text = torch.randint(0, 49408, (32, 256)).cuda()
|
||||
images = torch.randn(32, 3, 256, 256).cuda()
|
||||
text = torch.randint(0, 49408, (512, 256)).cuda()
|
||||
images = torch.randn(512, 3, 256, 256).cuda()
|
||||
|
||||
# prior networks (with transformer)
|
||||
|
||||
@@ -848,7 +858,7 @@ diffusion_prior_trainer.update() # this will update the optimizer as well as th
|
||||
# after much of the above three lines in a loop
|
||||
# you can sample from the exponential moving average of the diffusion prior identically to how you do so for DiffusionPrior
|
||||
|
||||
image_embeds = diffusion_prior_trainer.sample(text) # (4, 512) - exponential moving averaged image embeddings
|
||||
image_embeds = diffusion_prior_trainer.sample(text, max_batch_size = 4) # (512, 512) - exponential moving averaged image embeddings
|
||||
```
|
||||
|
||||
## Bonus
|
||||
@@ -861,7 +871,7 @@ ex.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from dalle2_pytorch import Unet, Decoder
|
||||
from dalle2_pytorch import Unet, Decoder, DecoderTrainer
|
||||
|
||||
# unet for the cascading ddpm
|
||||
|
||||
@@ -884,20 +894,24 @@ decoder = Decoder(
|
||||
unconditional = True
|
||||
).cuda()
|
||||
|
||||
# mock images (get a lot of this)
|
||||
# decoder trainer
|
||||
|
||||
decoder_trainer = DecoderTrainer(decoder)
|
||||
|
||||
# images (get a lot of this)
|
||||
|
||||
images = torch.randn(1, 3, 512, 512).cuda()
|
||||
|
||||
# feed images into decoder
|
||||
|
||||
for i in (1, 2):
|
||||
loss = decoder(images, unet_number = i)
|
||||
loss.backward()
|
||||
loss = decoder_trainer(images, unet_number = i)
|
||||
decoder_trainer.update(unet_number = i)
|
||||
|
||||
# do the above for many many many many steps
|
||||
# do the above for many many many many images
|
||||
# then it will learn to generate images
|
||||
|
||||
images = decoder.sample(batch_size = 2) # (2, 3, 512, 512)
|
||||
images = decoder_trainer.sample(batch_size = 36, max_batch_size = 4) # (36, 3, 512, 512)
|
||||
```
|
||||
|
||||
## Dataloaders
|
||||
|
||||
@@ -61,6 +61,9 @@ def default(val, d):
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
def module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
@contextmanager
|
||||
def null_context(*args, **kwargs):
|
||||
yield
|
||||
@@ -936,7 +939,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
|
||||
@@ -945,7 +948,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
|
||||
@@ -981,7 +984,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
loss = self.loss_fn(pred, target)
|
||||
return loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample_batch_size(self, batch_size, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
@@ -993,7 +996,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
|
||||
return img
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(self, text, num_samples_per_batch = 2, cond_scale = 1.):
|
||||
# in the paper, what they did was
|
||||
@@ -1694,7 +1697,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip_adapter_overrides = dict(),
|
||||
learned_variance = True,
|
||||
vb_loss_weight = 0.001,
|
||||
unconditional = False
|
||||
unconditional = False,
|
||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||
):
|
||||
super().__init__(
|
||||
beta_schedule = beta_schedule,
|
||||
@@ -1803,6 +1807,10 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip_denoised = clip_denoised
|
||||
self.clip_x_start = clip_x_start
|
||||
|
||||
# normalize and unnormalize image functions
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
||||
|
||||
def get_unet(self, unet_number):
|
||||
assert 0 < unet_number <= len(self.unets)
|
||||
index = unet_number - 1
|
||||
@@ -1816,11 +1824,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
self.cuda()
|
||||
self.unets.cpu()
|
||||
|
||||
devices = [module_device(unet) for unet in self.unets]
|
||||
self.unets.cpu()
|
||||
unet.cuda()
|
||||
|
||||
yield
|
||||
unet.cpu()
|
||||
|
||||
for unet, device in zip(self.unets, devices):
|
||||
unet.to(device)
|
||||
|
||||
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||
@@ -1853,7 +1865,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
@@ -1862,14 +1874,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
|
||||
device = self.betas.device
|
||||
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
img = self.p_sample(
|
||||
@@ -1886,16 +1899,17 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
|
||||
unnormalize_img = unnormalize_zero_to_one(img)
|
||||
unnormalize_img = self.unnormalize_img(img)
|
||||
return unnormalize_img
|
||||
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False):
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
|
||||
# normalize to [-1, 1]
|
||||
|
||||
x_start = normalize_neg_one_to_one(x_start)
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
if not is_latent_diffusion:
|
||||
x_start = self.normalize_img(x_start)
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
# get x_t
|
||||
|
||||
@@ -1955,12 +1969,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return loss + vb_loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(
|
||||
self,
|
||||
image_embed = None,
|
||||
text = None,
|
||||
text_mask = None,
|
||||
text_encodings = None,
|
||||
batch_size = 1,
|
||||
cond_scale = 1.,
|
||||
stop_at_unet_number = None
|
||||
@@ -1970,8 +1986,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
if not self.unconditional:
|
||||
batch_size = image_embed.shape[0]
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text):
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip)
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
|
||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||
@@ -2007,7 +2023,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
predict_x_start = predict_x_start,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = not is_latent_diffusion,
|
||||
lowres_cond_img = lowres_cond_img
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
is_latent_diffusion = is_latent_diffusion
|
||||
)
|
||||
|
||||
img = vae.decode(img)
|
||||
@@ -2023,6 +2040,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
text = None,
|
||||
image_embed = None,
|
||||
text_encodings = None,
|
||||
text_mask = None,
|
||||
unet_number = None
|
||||
):
|
||||
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
||||
@@ -2047,7 +2065,6 @@ class Decoder(BaseGaussianDiffusion):
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder'
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
@@ -2066,12 +2083,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
image = aug(image)
|
||||
lowres_cond_img = aug(lowres_cond_img, params = aug._params)
|
||||
|
||||
is_latent_diffusion = not isinstance(vae, NullVQGanVAE)
|
||||
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
image = vae.encode(image)
|
||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion)
|
||||
|
||||
# main class
|
||||
|
||||
@@ -2094,7 +2113,7 @@ class DALLE2(nn.Module):
|
||||
|
||||
self.to_pil = T.ToPILImage()
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def forward(
|
||||
self,
|
||||
@@ -2103,7 +2122,7 @@ class DALLE2(nn.Module):
|
||||
prior_cond_scale = 1.,
|
||||
return_pil_images = False
|
||||
):
|
||||
device = next(self.parameters()).device
|
||||
device = module_device(self)
|
||||
one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1)
|
||||
|
||||
if isinstance(text, str) or is_list_str(text):
|
||||
|
||||
59
dalle2_pytorch/dataloaders/simple_image_only_dataloader.py
Normal file
59
dalle2_pytorch/dataloaders/simple_image_only_dataloader.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torch.utils import data
|
||||
from torchvision import transforms, utils
|
||||
|
||||
from PIL import Image
|
||||
|
||||
# helpers functions
|
||||
|
||||
def cycle(dl):
|
||||
while True:
|
||||
for data in dl:
|
||||
yield data
|
||||
|
||||
# dataset and dataloader
|
||||
|
||||
class Dataset(data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
folder,
|
||||
image_size,
|
||||
exts = ['jpg', 'jpeg', 'png']
|
||||
):
|
||||
super().__init__()
|
||||
self.folder = folder
|
||||
self.image_size = image_size
|
||||
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
|
||||
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Resize(image_size),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.CenterCrop(image_size),
|
||||
transforms.ToTensor()
|
||||
])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.paths)
|
||||
|
||||
def __getitem__(self, index):
|
||||
path = self.paths[index]
|
||||
img = Image.open(path)
|
||||
return self.transform(img)
|
||||
|
||||
def get_images_dataloader(
|
||||
folder,
|
||||
*,
|
||||
batch_size,
|
||||
image_size,
|
||||
shuffle = True,
|
||||
cycle_dl = True,
|
||||
pin_memory = True
|
||||
):
|
||||
ds = Dataset(folder, image_size)
|
||||
dl = data.DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory)
|
||||
|
||||
if cycle_dl:
|
||||
dl = cycle(dl)
|
||||
return dl
|
||||
@@ -7,7 +7,7 @@ def separate_weight_decayable_params(params):
|
||||
|
||||
def get_optimizer(
|
||||
params,
|
||||
lr = 2e-5,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
|
||||
@@ -47,6 +47,14 @@ def groupby_prefix_and_trim(prefix, d):
|
||||
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
||||
return kwargs_without_prefix, kwargs
|
||||
|
||||
def num_to_groups(num, divisor):
|
||||
groups = num // divisor
|
||||
remainder = num % divisor
|
||||
arr = [divisor] * groups
|
||||
if remainder > 0:
|
||||
arr.append(remainder)
|
||||
return arr
|
||||
|
||||
# decorators
|
||||
|
||||
def cast_torch_tensor(fn):
|
||||
@@ -179,8 +187,8 @@ class EMA(nn.Module):
|
||||
self.online_model = model
|
||||
self.ema_model = copy.deepcopy(model)
|
||||
|
||||
self.update_after_step = update_after_step # only start EMA after this step number, starting at 0
|
||||
self.update_every = update_every
|
||||
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([False]))
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
@@ -189,14 +197,21 @@ class EMA(nn.Module):
|
||||
device = self.initted.device
|
||||
self.ema_model.to(device)
|
||||
|
||||
def copy_params_from_model_to_ema(self):
|
||||
self.ema_model.state_dict(self.online_model.state_dict())
|
||||
|
||||
def update(self):
|
||||
self.step += 1
|
||||
|
||||
if self.step <= self.update_after_step or (self.step % self.update_every) != 0:
|
||||
if (self.step % self.update_every) != 0:
|
||||
return
|
||||
|
||||
if self.step <= self.update_after_step:
|
||||
self.copy_params_from_model_to_ema()
|
||||
return
|
||||
|
||||
if not self.initted:
|
||||
self.ema_model.state_dict(self.online_model.state_dict())
|
||||
self.copy_params_from_model_to_ema()
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
self.update_moving_average(self.ema_model, self.online_model)
|
||||
@@ -220,6 +235,16 @@ class EMA(nn.Module):
|
||||
|
||||
# diffusion prior trainer
|
||||
|
||||
def prior_sample_in_chunks(fn):
|
||||
@wraps(fn)
|
||||
def inner(self, *args, max_batch_size = None, **kwargs):
|
||||
if not exists(max_batch_size):
|
||||
return fn(self, *args, **kwargs)
|
||||
|
||||
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
|
||||
return torch.cat(outputs, dim = 0)
|
||||
return inner
|
||||
|
||||
class DiffusionPriorTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -278,17 +303,19 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.step += 1
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def p_sample_loop(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def sample(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def sample_batch_size(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
|
||||
|
||||
@@ -315,15 +342,31 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
# decoder trainer
|
||||
|
||||
def decoder_sample_in_chunks(fn):
|
||||
@wraps(fn)
|
||||
def inner(self, *args, max_batch_size = None, **kwargs):
|
||||
if not exists(max_batch_size):
|
||||
return fn(self, *args, **kwargs)
|
||||
|
||||
if self.decoder.unconditional:
|
||||
batch_size = kwargs.get('batch_size')
|
||||
batch_sizes = num_to_groups(batch_size, max_batch_size)
|
||||
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
|
||||
else:
|
||||
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
|
||||
|
||||
return torch.cat(outputs, dim = 0)
|
||||
return inner
|
||||
|
||||
class DecoderTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
decoder,
|
||||
use_ema = True,
|
||||
lr = 2e-5,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
eps = 1e-8,
|
||||
max_grad_norm = None,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
**kwargs
|
||||
):
|
||||
@@ -404,15 +447,17 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
@decoder_sample_in_chunks
|
||||
def sample(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
trainable_unets = self.decoder.unets
|
||||
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
if kwargs.pop('use_non_ema', False) or not self.use_ema:
|
||||
return self.decoder.sample(*args, **kwargs)
|
||||
|
||||
trainable_unets = self.decoder.unets
|
||||
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
|
||||
output = self.decoder.sample(*args, **kwargs)
|
||||
|
||||
if self.use_ema:
|
||||
self.decoder.unets = trainable_unets # restore original training unets
|
||||
self.decoder.unets = trainable_unets # restore original training unets
|
||||
|
||||
# cast the ema_model unets back to original device
|
||||
for ema in self.ema_unets:
|
||||
|
||||
BIN
samples/oxford.png
Normal file
BIN
samples/oxford.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 985 KiB |
Reference in New Issue
Block a user