mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9232b01ff6 | ||
|
|
dab106d4e5 | ||
|
|
bb151ca6b1 | ||
|
|
4a59dea4cf |
@@ -1,6 +1,6 @@
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
|
||||
from dalle2_pytorch.train import DecoderTrainer, DiffusionPriorTrainer
|
||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||
|
||||
from dalle2_pytorch.vqgan_vae import VQGanVAE
|
||||
from x_clip import CLIP
|
||||
|
||||
@@ -61,6 +61,9 @@ def default(val, d):
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
def module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
@contextmanager
|
||||
def null_context(*args, **kwargs):
|
||||
yield
|
||||
@@ -936,7 +939,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
|
||||
@@ -945,7 +948,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
|
||||
@@ -981,7 +984,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
loss = self.loss_fn(pred, target)
|
||||
return loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample_batch_size(self, batch_size, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
@@ -993,7 +996,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
|
||||
return img
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(self, text, num_samples_per_batch = 2, cond_scale = 1.):
|
||||
# in the paper, what they did was
|
||||
@@ -1816,11 +1819,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
self.cuda()
|
||||
self.unets.cpu()
|
||||
|
||||
devices = [module_device(unet) for unet in self.unets]
|
||||
self.unets.cpu()
|
||||
unet.cuda()
|
||||
|
||||
yield
|
||||
unet.cpu()
|
||||
|
||||
for unet, device in zip(self.unets, devices):
|
||||
unet.to(device)
|
||||
|
||||
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||
@@ -1853,7 +1860,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
@@ -1862,7 +1869,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
|
||||
device = self.betas.device
|
||||
|
||||
@@ -1955,12 +1962,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
return loss + vb_loss
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def sample(
|
||||
self,
|
||||
image_embed = None,
|
||||
text = None,
|
||||
text_mask = None,
|
||||
text_encodings = None,
|
||||
batch_size = 1,
|
||||
cond_scale = 1.,
|
||||
stop_at_unet_number = None
|
||||
@@ -1970,8 +1979,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
if not self.unconditional:
|
||||
batch_size = image_embed.shape[0]
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text):
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exist(self.clip)
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
|
||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||
@@ -2023,6 +2032,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
text = None,
|
||||
image_embed = None,
|
||||
text_encodings = None,
|
||||
text_mask = None,
|
||||
unet_number = None
|
||||
):
|
||||
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
||||
@@ -2047,7 +2057,6 @@ class Decoder(BaseGaussianDiffusion):
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder'
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
@@ -2094,7 +2103,7 @@ class DALLE2(nn.Module):
|
||||
|
||||
self.to_pil = T.ToPILImage()
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def forward(
|
||||
self,
|
||||
@@ -2103,7 +2112,7 @@ class DALLE2(nn.Module):
|
||||
prior_cond_scale = 1.,
|
||||
return_pil_images = False
|
||||
):
|
||||
device = next(self.parameters()).device
|
||||
device = module_device(self)
|
||||
one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1)
|
||||
|
||||
if isinstance(text, str) or is_list_str(text):
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
from dalle2_pytorch.dataloaders.decoder_loader import ImageEmbeddingDataset, create_image_embedding_dataloader
|
||||
from dalle2_pytorch.dataloaders.decoder_loader import ImageEmbeddingDataset, create_image_embedding_dataloader
|
||||
from dalle2_pytorch.dataloaders.embedding_wrapper import make_splits
|
||||
|
||||
180
dalle2_pytorch/dataloaders/embedding_wrapper.py
Normal file
180
dalle2_pytorch/dataloaders/embedding_wrapper.py
Normal file
@@ -0,0 +1,180 @@
|
||||
from torch.utils.data import IterableDataset
|
||||
from torch import from_numpy
|
||||
from clip import tokenize
|
||||
from embedding_reader import EmbeddingReader
|
||||
|
||||
|
||||
class PriorEmbeddingLoader(IterableDataset):
|
||||
def __init__(
|
||||
self,
|
||||
text_conditioned: bool,
|
||||
batch_size: int,
|
||||
start: int,
|
||||
stop: int,
|
||||
image_reader,
|
||||
text_reader: EmbeddingReader = None,
|
||||
device: str = "cpu",
|
||||
) -> None:
|
||||
super(PriorEmbeddingLoader).__init__()
|
||||
|
||||
self.text_conditioned = text_conditioned
|
||||
|
||||
if not self.text_conditioned:
|
||||
self.text_reader = text_reader
|
||||
|
||||
self.image_reader = image_reader
|
||||
self.batch_size = batch_size
|
||||
self.start = start
|
||||
self.stop = stop
|
||||
self.device = device
|
||||
|
||||
def __iter__(self):
|
||||
self.n = 0
|
||||
loader_args = dict(
|
||||
batch_size=self.batch_size,
|
||||
start=self.start,
|
||||
end=self.stop,
|
||||
show_progress=False,
|
||||
)
|
||||
if self.text_conditioned:
|
||||
self.loader = self.image_reader(**loader_args)
|
||||
else:
|
||||
self.loader = zip(
|
||||
self.image_reader(**loader_args), self.text_reader(**loader_args)
|
||||
)
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
try:
|
||||
return self.get_sample()
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
|
||||
def get_sample(self):
|
||||
"""
|
||||
pre-proocess data from either reader into a common format
|
||||
"""
|
||||
self.n += 1
|
||||
|
||||
if self.text_conditioned:
|
||||
image_embedding, caption = next(self.loader)
|
||||
|
||||
image_embedding = from_numpy(image_embedding).to(self.device)
|
||||
tokenized_caption = tokenize(
|
||||
caption["caption"].to_list(), truncate=True
|
||||
).to(self.device)
|
||||
|
||||
return image_embedding, tokenized_caption
|
||||
|
||||
else:
|
||||
(image_embedding, _), (text_embedding, _) = next(self.loader)
|
||||
|
||||
image_embedding = from_numpy(image_embedding).to(self.device)
|
||||
text_embedding = from_numpy(text_embedding).to(self.device)
|
||||
|
||||
return image_embedding, text_embedding
|
||||
|
||||
|
||||
def make_splits(
|
||||
text_conditioned: bool,
|
||||
batch_size: int,
|
||||
num_data_points: int,
|
||||
train_split: float,
|
||||
eval_split: float,
|
||||
device: str,
|
||||
img_url: str,
|
||||
meta_url: str = None,
|
||||
txt_url: str = None,
|
||||
):
|
||||
|
||||
assert img_url is not None, "Must supply some image embeddings"
|
||||
|
||||
if text_conditioned:
|
||||
assert meta_url is not None, "Must supply metadata url if text-conditioning"
|
||||
image_reader = EmbeddingReader(
|
||||
embeddings_folder=img_url,
|
||||
file_format="parquet_npy",
|
||||
meta_columns=["caption"],
|
||||
metadata_folder=meta_url,
|
||||
)
|
||||
|
||||
# compute split points
|
||||
if num_data_points > image_reader.count:
|
||||
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
|
||||
num_data_points = image_reader.count
|
||||
|
||||
train_set_size = int(train_split * num_data_points)
|
||||
eval_set_size = int(eval_split * num_data_points)
|
||||
eval_stop = int(train_set_size + eval_set_size)
|
||||
|
||||
train_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
batch_size=batch_size,
|
||||
start=0,
|
||||
stop=train_set_size,
|
||||
device=device,
|
||||
)
|
||||
eval_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
batch_size=batch_size,
|
||||
start=train_set_size,
|
||||
stop=eval_stop,
|
||||
device=device,
|
||||
)
|
||||
test_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
batch_size=batch_size,
|
||||
start=eval_stop,
|
||||
stop=int(num_data_points),
|
||||
device=device,
|
||||
)
|
||||
|
||||
else:
|
||||
assert (
|
||||
txt_url is not None
|
||||
), "Must supply text embedding url if not text-conditioning"
|
||||
|
||||
image_reader = EmbeddingReader(img_url, file_format="npy")
|
||||
text_reader = EmbeddingReader(txt_url, file_format="npy")
|
||||
|
||||
# compute split points
|
||||
if num_data_points > image_reader.count:
|
||||
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
|
||||
num_data_points = image_reader.count
|
||||
|
||||
train_set_size = int(train_split * num_data_points)
|
||||
eval_set_size = int(eval_split * num_data_points)
|
||||
eval_stop = int(train_set_size + eval_set_size)
|
||||
|
||||
train_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
text_reader=text_reader,
|
||||
batch_size=batch_size,
|
||||
start=0,
|
||||
stop=train_set_size,
|
||||
device=device,
|
||||
)
|
||||
eval_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
text_reader=text_reader,
|
||||
batch_size=batch_size,
|
||||
start=train_set_size,
|
||||
stop=eval_stop,
|
||||
device=device,
|
||||
)
|
||||
test_loader = PriorEmbeddingLoader(
|
||||
text_conditioned=text_conditioned,
|
||||
image_reader=image_reader,
|
||||
text_reader=text_reader,
|
||||
batch_size=batch_size,
|
||||
start=eval_stop,
|
||||
stop=int(num_data_points),
|
||||
device=device,
|
||||
)
|
||||
|
||||
return train_loader, eval_loader, test_loader
|
||||
@@ -278,17 +278,17 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.step += 1
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
def p_sample_loop(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
def sample(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def sample_batch_size(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
|
||||
|
||||
@@ -377,8 +377,11 @@ class DecoderTrainer(nn.Module):
|
||||
scaler = getattr(self, f'scaler{index}')
|
||||
return scaler.scale(loss)
|
||||
|
||||
def update(self, unet_number):
|
||||
assert 1 <= unet_number <= self.num_unets
|
||||
def update(self, unet_number = None):
|
||||
if self.num_unets == 1:
|
||||
unet_number = default(unet_number, 1)
|
||||
|
||||
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
|
||||
index = unet_number - 1
|
||||
unet = self.decoder.unets[index]
|
||||
|
||||
@@ -421,10 +424,13 @@ class DecoderTrainer(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
*args,
|
||||
unet_number,
|
||||
unet_number = None,
|
||||
max_batch_size = None,
|
||||
**kwargs
|
||||
):
|
||||
if self.num_unets == 1:
|
||||
unet_number = default(unet_number, 1)
|
||||
|
||||
total_loss = 0.
|
||||
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.2.38',
|
||||
version = '0.2.41',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -5,10 +5,13 @@ import time
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import clip
|
||||
from torch import nn
|
||||
|
||||
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork
|
||||
from dalle2_pytorch.train import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
|
||||
from dalle2_pytorch.dataloaders import make_splits
|
||||
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
|
||||
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
|
||||
|
||||
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
|
||||
|
||||
from embedding_reader import EmbeddingReader
|
||||
@@ -17,8 +20,7 @@ from tqdm import tqdm
|
||||
|
||||
# constants
|
||||
|
||||
NUM_TEST_EMBEDDINGS = 100 # for cosine similarity reporting during training
|
||||
REPORT_METRICS_EVERY = 100 # for cosine similarity and other metric reporting during training
|
||||
REPORT_METRICS_EVERY = 250 # for cosine similarity and other metric reporting during training
|
||||
|
||||
tracker = WandbTracker()
|
||||
|
||||
@@ -36,81 +38,106 @@ class Timer:
|
||||
|
||||
def elapsed(self):
|
||||
return time.time() - self.last_time
|
||||
|
||||
# functions
|
||||
|
||||
def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_type,phase="Validation"):
|
||||
def eval_model(model, dataloader, text_conditioned, loss_type, phase="Validation"):
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
total_loss = 0.
|
||||
total_samples = 0.
|
||||
|
||||
for emb_images, emb_text in zip(image_reader(batch_size=batch_size, start=start, end=end),
|
||||
text_reader(batch_size=batch_size, start=start, end=end)):
|
||||
for image_embeddings, text_data in tqdm(dataloader):
|
||||
|
||||
emb_images_tensor = torch.tensor(emb_images[0]).to(device)
|
||||
emb_text_tensor = torch.tensor(emb_text[0]).to(device)
|
||||
batches = image_embeddings.shape[0]
|
||||
|
||||
batches = emb_images_tensor.shape[0]
|
||||
input_args = dict(image_embed=image_embeddings)
|
||||
if text_conditioned:
|
||||
input_args = dict(**input_args, text = text_data)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text_data)
|
||||
|
||||
loss = model(text_embed = emb_text_tensor, image_embed = emb_images_tensor)
|
||||
loss = model(**input_args)
|
||||
|
||||
total_loss += loss.item() * batches
|
||||
total_loss += loss * batches
|
||||
total_samples += batches
|
||||
|
||||
avg_loss = (total_loss / total_samples)
|
||||
|
||||
tracker.log({f'{phase} {loss_type}': avg_loss})
|
||||
|
||||
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,NUM_TEST_EMBEDDINGS,device):
|
||||
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned):
|
||||
diffusion_prior.eval()
|
||||
|
||||
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
||||
|
||||
tstart = train_set_size
|
||||
tend = train_set_size+NUM_TEST_EMBEDDINGS
|
||||
for test_image_embeddings, text_data in tqdm(dataloader):
|
||||
|
||||
# we are text conditioned, we produce an embedding from the tokenized text
|
||||
if text_conditioned:
|
||||
text_embedding, text_encodings, text_mask = diffusion_prior.clip.embed_text(
|
||||
text_data)
|
||||
text_cond = dict(text_embed=text_embedding,
|
||||
text_encodings=text_encodings, mask=text_mask)
|
||||
else:
|
||||
text_embedding = text_data
|
||||
text_cond = dict(text_embed=text_embedding)
|
||||
|
||||
# make a copy of the text embeddings for shuffling
|
||||
text_embed_shuffled = text_embedding.clone()
|
||||
|
||||
# roll the text to simulate "unrelated" captions
|
||||
rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1)
|
||||
text_embed_shuffled = text_embed_shuffled[rolled_idx]
|
||||
text_embed_shuffled = text_embed_shuffled / \
|
||||
text_embed_shuffled.norm(dim=1, keepdim=True)
|
||||
|
||||
if text_conditioned:
|
||||
text_encodings_shuffled = text_encodings[rolled_idx]
|
||||
text_mask_shuffled = text_mask[rolled_idx]
|
||||
else:
|
||||
text_encodings_shuffled = None
|
||||
text_mask_shuffled = None
|
||||
|
||||
text_cond_shuffled = dict(text_embed=text_embed_shuffled,
|
||||
text_encodings=text_encodings_shuffled, mask=text_mask_shuffled)
|
||||
|
||||
for embt, embi in zip(text_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend),
|
||||
image_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend)):
|
||||
# make a copy of the text embeddings for shuffling
|
||||
text_embed = torch.tensor(embt[0]).to(device)
|
||||
text_embed_shuffled = text_embed.clone()
|
||||
# roll the text embeddings to simulate "unrelated" captions
|
||||
rolled_idx = torch.roll(torch.arange(NUM_TEST_EMBEDDINGS), 1)
|
||||
text_embed_shuffled = text_embed_shuffled[rolled_idx]
|
||||
text_embed_shuffled = text_embed_shuffled / \
|
||||
text_embed_shuffled.norm(dim=1, keepdim=True)
|
||||
test_text_shuffled_cond = dict(text_embed=text_embed_shuffled)
|
||||
# prepare the text embedding
|
||||
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
|
||||
test_text_cond = dict(text_embed=text_embed)
|
||||
text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True)
|
||||
|
||||
# prepare image embeddings
|
||||
test_image_embeddings = torch.tensor(embi[0]).to(device)
|
||||
test_image_embeddings = test_image_embeddings / \
|
||||
test_image_embeddings.norm(dim=1, keepdim=True)
|
||||
test_image_embeddings = test_image_embeddings / \
|
||||
test_image_embeddings.norm(dim=1, keepdim=True)
|
||||
|
||||
# predict on the unshuffled text embeddings
|
||||
predicted_image_embeddings = diffusion_prior.p_sample_loop(
|
||||
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_cond)
|
||||
predicted_image_embeddings = predicted_image_embeddings / \
|
||||
predicted_image_embeddings.norm(dim=1, keepdim=True)
|
||||
predicted_image_embeddings = diffusion_prior.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond)
|
||||
predicted_image_embeddings = predicted_image_embeddings / \
|
||||
predicted_image_embeddings.norm(dim=1, keepdim=True)
|
||||
|
||||
# predict on the shuffled embeddings
|
||||
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
|
||||
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_shuffled_cond)
|
||||
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
|
||||
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
|
||||
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond_shuffled)
|
||||
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
|
||||
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
|
||||
|
||||
# calculate similarities
|
||||
original_similarity = cos(
|
||||
original_similarity = cos(
|
||||
text_embed, test_image_embeddings).cpu().numpy()
|
||||
predicted_similarity = cos(
|
||||
predicted_similarity = cos(
|
||||
text_embed, predicted_image_embeddings).cpu().numpy()
|
||||
unrelated_similarity = cos(
|
||||
unrelated_similarity = cos(
|
||||
text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
predicted_img_similarity = cos(
|
||||
predicted_img_similarity = cos(
|
||||
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
|
||||
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
|
||||
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
|
||||
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("--wandb-entity", default="laion")
|
||||
@click.option("--wandb-project", default="diffusion-prior")
|
||||
@@ -118,29 +145,32 @@ def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,N
|
||||
@click.option("--wandb-arch", default="DiffusionPrior")
|
||||
@click.option("--image-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/")
|
||||
@click.option("--text-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/")
|
||||
@click.option("--meta-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/")
|
||||
@click.option("--learning-rate", default=1.1e-4)
|
||||
@click.option("--weight-decay", default=6.02e-2)
|
||||
@click.option("--dropout", default=5e-2)
|
||||
@click.option("--max-grad-norm", default=0.5)
|
||||
@click.option("--batch-size", default=10**4)
|
||||
@click.option("--num-data-points", default=250e6)
|
||||
@click.option("--batch-size", default=320)
|
||||
@click.option("--num-epochs", default=5)
|
||||
@click.option("--image-embed-dim", default=768)
|
||||
@click.option("--train-percent", default=0.7)
|
||||
@click.option("--val-percent", default=0.2)
|
||||
@click.option("--test-percent", default=0.1)
|
||||
@click.option("--dpn-depth", default=6)
|
||||
@click.option("--train-percent", default=0.9)
|
||||
@click.option("--val-percent", default=1e-7)
|
||||
@click.option("--test-percent", default=0.0999999)
|
||||
@click.option("--dpn-depth", default=12)
|
||||
@click.option("--dpn-dim-head", default=64)
|
||||
@click.option("--dpn-heads", default=8)
|
||||
@click.option("--dp-condition-on-text-encodings", default=False)
|
||||
@click.option("--dp-timesteps", default=100)
|
||||
@click.option("--dp-normformer", default=False)
|
||||
@click.option("--dpn-heads", default=12)
|
||||
@click.option("--dp-condition-on-text-encodings", default=True)
|
||||
@click.option("--dp-timesteps", default=1000)
|
||||
@click.option("--dp-normformer", default=True)
|
||||
@click.option("--dp-cond-drop-prob", default=0.1)
|
||||
@click.option("--dp-loss-type", default="l2")
|
||||
@click.option("--clip", default=None)
|
||||
@click.option("--clip", default="ViT-L/14")
|
||||
@click.option("--amp", default=False)
|
||||
@click.option("--save-interval", default=30)
|
||||
@click.option("--save-interval", default=120)
|
||||
@click.option("--save-path", default="./diffusion_prior_checkpoints")
|
||||
@click.option("--pretrained-model-path", default=None)
|
||||
@click.option("--gpu-device", default=0)
|
||||
def train(
|
||||
wandb_entity,
|
||||
wandb_project,
|
||||
@@ -148,10 +178,12 @@ def train(
|
||||
wandb_arch,
|
||||
image_embed_url,
|
||||
text_embed_url,
|
||||
meta_url,
|
||||
learning_rate,
|
||||
weight_decay,
|
||||
dropout,
|
||||
max_grad_norm,
|
||||
num_data_points,
|
||||
batch_size,
|
||||
num_epochs,
|
||||
image_embed_dim,
|
||||
@@ -170,7 +202,8 @@ def train(
|
||||
amp,
|
||||
save_interval,
|
||||
save_path,
|
||||
pretrained_model_path
|
||||
pretrained_model_path,
|
||||
gpu_device
|
||||
):
|
||||
config = {
|
||||
"learning_rate": learning_rate,
|
||||
@@ -197,7 +230,7 @@ def train(
|
||||
|
||||
# Check if DPRIOR_PATH exists(saved model path)
|
||||
|
||||
DPRIOR_PATH = args.pretrained_model_path
|
||||
DPRIOR_PATH = pretrained_model_path
|
||||
RESUME = exists(DPRIOR_PATH)
|
||||
|
||||
if not RESUME:
|
||||
@@ -211,7 +244,7 @@ def train(
|
||||
|
||||
has_cuda = torch.cuda.is_available()
|
||||
if has_cuda:
|
||||
device = torch.device("cuda:0")
|
||||
device = torch.device(f"cuda:{gpu_device}")
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
# Training loop
|
||||
@@ -227,11 +260,17 @@ def train(
|
||||
normformer = dp_normformer
|
||||
)
|
||||
|
||||
# Load clip model if text-conditioning
|
||||
if dp_condition_on_text_encodings:
|
||||
clip_adapter = OpenAIClipAdapter(clip)
|
||||
else:
|
||||
clip_adapter = None
|
||||
|
||||
# diffusion prior with text embeddings and image embeddings pre-computed
|
||||
|
||||
diffusion_prior = DiffusionPrior(
|
||||
net = prior_network,
|
||||
clip = clip,
|
||||
clip = clip_adapter,
|
||||
image_embed_dim = image_embed_dim,
|
||||
timesteps = dp_timesteps,
|
||||
cond_drop_prob = dp_cond_drop_prob,
|
||||
@@ -265,33 +304,37 @@ def train(
|
||||
|
||||
Path(save_path).mkdir(exist_ok = True, parents = True)
|
||||
|
||||
# Get image and text embeddings from the servers
|
||||
# Utilize wrapper to abstract away loader logic
|
||||
print_ribbon("Downloading Embeddings")
|
||||
loader_args = dict(text_conditioned=dp_condition_on_text_encodings, batch_size=batch_size, num_data_points=num_data_points,
|
||||
train_split=train_percent, eval_split=val_percent, device=device, img_url=image_embed_url)
|
||||
|
||||
print_ribbon("Downloading embeddings - image and text")
|
||||
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
|
||||
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
|
||||
num_data_points = text_reader.count
|
||||
if dp_condition_on_text_encodings:
|
||||
loader_args = dict(**loader_args, meta_url=meta_url)
|
||||
else:
|
||||
loader_args = dict(**loader_args, txt_url=text_embed_url)
|
||||
|
||||
train_loader, eval_loader, test_loader = make_splits(**loader_args)
|
||||
|
||||
### Training code ###
|
||||
|
||||
step = 1
|
||||
timer = Timer()
|
||||
epochs = num_epochs
|
||||
|
||||
train_set_size = int(train_percent*num_data_points)
|
||||
val_set_size = int(val_percent*num_data_points)
|
||||
eval_start = train_set_size
|
||||
|
||||
for _ in range(epochs):
|
||||
|
||||
for emb_images,emb_text in zip(image_reader(batch_size=batch_size, start=0, end=train_set_size),
|
||||
text_reader(batch_size=batch_size, start=0, end=train_set_size)):
|
||||
|
||||
trainer.train()
|
||||
for image, text in tqdm(train_loader):
|
||||
|
||||
emb_images_tensor = torch.tensor(emb_images[0]).to(device)
|
||||
emb_text_tensor = torch.tensor(emb_text[0]).to(device)
|
||||
diffusion_prior.train()
|
||||
|
||||
input_args = dict(image_embed=image)
|
||||
if dp_condition_on_text_encodings:
|
||||
input_args = dict(**input_args, text = text)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text)
|
||||
|
||||
loss = trainer(text_embed = emb_text_tensor, image_embed = emb_images_tensor)
|
||||
loss = trainer(**input_args)
|
||||
|
||||
# Samples per second
|
||||
|
||||
@@ -310,37 +353,23 @@ def train(
|
||||
image_embed_dim)
|
||||
|
||||
# Log to wandb
|
||||
tracker.log({"Training loss": loss.item(),
|
||||
tracker.log({"Training loss": loss,
|
||||
"Steps": step,
|
||||
"Samples per second": samples_per_sec})
|
||||
# Log cosineSim(text_embed,predicted_image_embed) - cosineSim(text_embed,image_embed)
|
||||
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
|
||||
# Get embeddings from the most recently saved model
|
||||
if(step % REPORT_METRICS_EVERY) == 0:
|
||||
report_cosine_sims(diffusion_prior,
|
||||
image_reader,
|
||||
text_reader,
|
||||
train_set_size,
|
||||
NUM_TEST_EMBEDDINGS,
|
||||
device)
|
||||
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings)
|
||||
### Evaluate model(validation run) ###
|
||||
eval_model(diffusion_prior,
|
||||
device,
|
||||
image_reader,
|
||||
text_reader,
|
||||
eval_start,
|
||||
eval_start+NUM_TEST_EMBEDDINGS,
|
||||
NUM_TEST_EMBEDDINGS,
|
||||
dp_loss_type,
|
||||
phase="Validation")
|
||||
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation")
|
||||
|
||||
step += 1
|
||||
trainer.update()
|
||||
|
||||
### Test run ###
|
||||
test_set_size = int(test_percent*train_set_size)
|
||||
start = train_set_size+val_set_size
|
||||
end = num_data_points
|
||||
eval_model(diffusion_prior,device,image_reader,text_reader,start,end,batch_size,dp_loss_type,phase="Test")
|
||||
eval_model(diffusion_prior, test_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Test")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
|
||||
Reference in New Issue
Block a user