mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36c5079bd7 | ||
|
|
4a4c7ac9e6 | ||
|
|
fad7481479 | ||
|
|
123658d082 | ||
|
|
11d4e11f10 |
63
README.md
63
README.md
@@ -706,7 +706,7 @@ mock_image_embed = torch.randn(1, 512).cuda()
|
||||
images = decoder.sample(mock_image_embed) # (1, 3, 1024, 1024)
|
||||
```
|
||||
|
||||
## Training wrapper (wip)
|
||||
## Training wrapper
|
||||
|
||||
### Decoder Training
|
||||
|
||||
@@ -851,6 +851,57 @@ diffusion_prior_trainer.update() # this will update the optimizer as well as th
|
||||
image_embeds = diffusion_prior_trainer.sample(text) # (4, 512) - exponential moving averaged image embeddings
|
||||
```
|
||||
|
||||
## Bonus
|
||||
|
||||
### Unconditional Training
|
||||
|
||||
The repository also contains the means to train unconditional DDPM model, or even cascading DDPMs. You simply have to set `unconditional = True` in the `Decoder`
|
||||
|
||||
ex.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from dalle2_pytorch import Unet, Decoder
|
||||
|
||||
# unet for the cascading ddpm
|
||||
|
||||
unet1 = Unet(
|
||||
dim = 128,
|
||||
dim_mults=(1, 2, 4, 8)
|
||||
).cuda()
|
||||
|
||||
unet2 = Unet(
|
||||
dim = 32,
|
||||
dim_mults = (1, 2, 4, 8, 16)
|
||||
).cuda()
|
||||
|
||||
# decoder, which contains the unets
|
||||
|
||||
decoder = Decoder(
|
||||
unet = (unet1, unet2),
|
||||
image_sizes = (256, 512), # first unet up to 256px, then second to 512px
|
||||
timesteps = 1000,
|
||||
unconditional = True
|
||||
).cuda()
|
||||
|
||||
# mock images (get a lot of this)
|
||||
|
||||
images = torch.randn(1, 3, 512, 512).cuda()
|
||||
|
||||
# feed images into decoder
|
||||
|
||||
for i in (1, 2):
|
||||
loss = decoder(images, unet_number = i)
|
||||
loss.backward()
|
||||
|
||||
# do the above for many many many many steps
|
||||
# then it will learn to generate images
|
||||
|
||||
images = decoder.sample(batch_size = 2) # (2, 3, 512, 512)
|
||||
```
|
||||
|
||||
## Dataloaders
|
||||
|
||||
### Decoder Dataloaders
|
||||
|
||||
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
|
||||
@@ -1014,6 +1065,7 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
|
||||
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -1102,4 +1154,13 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{ho2021cascaded,
|
||||
title = {Cascaded Diffusion Models for High Fidelity Image Generation},
|
||||
author = {Ho, Jonathan and Saharia, Chitwan and Chan, William and Fleet, David J and Norouzi, Mohammad and Salimans, Tim},
|
||||
journal = {arXiv preprint arXiv:2106.15282},
|
||||
year = {2021}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -794,7 +794,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
text_embed,
|
||||
text_encodings = None,
|
||||
mask = None,
|
||||
cond_drop_prob = 0.2
|
||||
cond_drop_prob = 0.
|
||||
):
|
||||
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
|
||||
|
||||
@@ -1305,7 +1305,7 @@ class Unet(nn.Module):
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
image_embed_dim,
|
||||
image_embed_dim = None,
|
||||
text_embed_dim = None,
|
||||
cond_dim = None,
|
||||
num_image_tokens = 4,
|
||||
@@ -1377,7 +1377,7 @@ class Unet(nn.Module):
|
||||
self.image_to_cond = nn.Sequential(
|
||||
nn.Linear(image_embed_dim, cond_dim * num_image_tokens),
|
||||
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
||||
) if image_embed_dim != cond_dim else nn.Identity()
|
||||
) if cond_on_image_embeds and image_embed_dim != cond_dim else nn.Identity()
|
||||
|
||||
self.norm_cond = nn.LayerNorm(cond_dim)
|
||||
self.norm_mid_cond = nn.LayerNorm(cond_dim)
|
||||
@@ -1387,7 +1387,8 @@ class Unet(nn.Module):
|
||||
self.text_to_cond = None
|
||||
|
||||
if cond_on_text_encodings:
|
||||
self.text_to_cond = nn.LazyLinear(cond_dim) if not exists(text_embed_dim) else nn.Linear(text_embed_dim, cond_dim)
|
||||
assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text_encodings is True'
|
||||
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
|
||||
|
||||
# finer control over whether to condition on image embeddings and text encodings
|
||||
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
|
||||
@@ -1701,7 +1702,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.unconditional = unconditional
|
||||
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
|
||||
assert exists(clip) ^ exists(image_size), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
|
||||
assert self.unconditional or (exists(clip) ^ exists(image_size)), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
|
||||
|
||||
self.clip = None
|
||||
if exists(clip):
|
||||
@@ -2036,12 +2037,12 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
|
||||
|
||||
if not exists(image_embed):
|
||||
if not exists(image_embed) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text) and not exists(text_encodings):
|
||||
if exists(text) and not exists(text_encodings) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder'
|
||||
_, text_encodings, text_mask = self.clip.embed_text(text)
|
||||
|
||||
|
||||
@@ -335,11 +335,6 @@ class DecoderTrainer(nn.Module):
|
||||
self.num_unets = len(self.decoder.unets)
|
||||
|
||||
self.use_ema = use_ema
|
||||
|
||||
if use_ema:
|
||||
has_lazy_linear = any([type(module) == nn.LazyLinear for module in decoder.modules()])
|
||||
assert not has_lazy_linear, 'you must set the text_embed_dim on your u-nets if you plan on doing automatic exponential moving average'
|
||||
|
||||
self.ema_unets = nn.ModuleList([])
|
||||
|
||||
self.amp = amp
|
||||
|
||||
Reference in New Issue
Block a user