Compare commits

...

8 Commits

4 changed files with 122 additions and 26 deletions

View File

@@ -706,7 +706,7 @@ mock_image_embed = torch.randn(1, 512).cuda()
images = decoder.sample(mock_image_embed) # (1, 3, 1024, 1024)
```
## Training wrapper (wip)
## Training wrapper
### Decoder Training
@@ -851,6 +851,57 @@ diffusion_prior_trainer.update() # this will update the optimizer as well as th
image_embeds = diffusion_prior_trainer.sample(text) # (4, 512) - exponential moving averaged image embeddings
```
## Bonus
### Unconditional Training
The repository also contains the means to train unconditional DDPM model, or even cascading DDPMs. You simply have to set `unconditional = True` in the `Decoder`
ex.
```python
import torch
from dalle2_pytorch import Unet, Decoder
# unet for the cascading ddpm
unet1 = Unet(
dim = 128,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 32,
dim_mults = (1, 2, 4, 8, 16)
).cuda()
# decoder, which contains the unets
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (256, 512), # first unet up to 256px, then second to 512px
timesteps = 1000,
unconditional = True
).cuda()
# mock images (get a lot of this)
images = torch.randn(1, 3, 512, 512).cuda()
# feed images into decoder
for i in (1, 2):
loss = decoder(images, unet_number = i)
loss.backward()
# do the above for many many many many steps
# then it will learn to generate images
images = decoder.sample(batch_size = 2) # (2, 3, 512, 512)
```
## Dataloaders
### Decoder Dataloaders
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
@@ -1013,6 +1064,8 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations
@@ -1101,4 +1154,13 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@article{ho2021cascaded,
title = {Cascaded Diffusion Models for High Fidelity Image Generation},
author = {Ho, Jonathan and Saharia, Chitwan and Chan, William and Fleet, David J and Norouzi, Mohammad and Salimans, Tim},
journal = {arXiv preprint arXiv:2106.15282},
year = {2021}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -794,7 +794,7 @@ class DiffusionPriorNetwork(nn.Module):
text_embed,
text_encodings = None,
mask = None,
cond_drop_prob = 0.2
cond_drop_prob = 0.
):
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
@@ -901,6 +901,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.channels = default(image_channels, lambda: clip.image_channels)
self.cond_drop_prob = cond_drop_prob
self.can_classifier_guidance = cond_drop_prob > 0.
self.condition_on_text_encodings = condition_on_text_encodings
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
@@ -914,8 +915,10 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.training_clamp_l2norm = training_clamp_l2norm
self.init_image_embed_l2norm = init_image_embed_l2norm
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
def p_mean_variance(self, x, t, text_cond, clip_denoised = False, cond_scale = 1.):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, **text_cond)
if self.predict_x_start:
x_recon = pred
@@ -934,16 +937,16 @@ class DiffusionPrior(BaseGaussianDiffusion):
return model_mean, posterior_variance, posterior_log_variance
@torch.inference_mode()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False):
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised)
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.inference_mode()
def p_sample_loop(self, shape, text_cond):
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
device = self.betas.device
b = shape[0]
@@ -954,7 +957,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
times = torch.full((b,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond, cond_scale = cond_scale)
return image_embed
@@ -980,19 +983,19 @@ class DiffusionPrior(BaseGaussianDiffusion):
@torch.inference_mode()
@eval_decorator
def sample_batch_size(self, batch_size, text_cond):
def sample_batch_size(self, batch_size, text_cond, cond_scale = 1.):
device = self.betas.device
shape = (batch_size, self.image_embed_dim)
img = torch.randn(shape, device = device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond)
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
return img
@torch.inference_mode()
@eval_decorator
def sample(self, text, num_samples_per_batch = 2):
def sample(self, text, num_samples_per_batch = 2, cond_scale = 1.):
# in the paper, what they did was
# sample 2 image embeddings, choose the top 1 similarity, as judged by CLIP
text = repeat(text, 'b ... -> (b r) ...', r = num_samples_per_batch)
@@ -1007,7 +1010,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
if self.condition_on_text_encodings:
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond, cond_scale = cond_scale)
# retrieve original unscaled image embed
@@ -1305,7 +1308,7 @@ class Unet(nn.Module):
self,
dim,
*,
image_embed_dim,
image_embed_dim = None,
text_embed_dim = None,
cond_dim = None,
num_image_tokens = 4,
@@ -1377,7 +1380,7 @@ class Unet(nn.Module):
self.image_to_cond = nn.Sequential(
nn.Linear(image_embed_dim, cond_dim * num_image_tokens),
Rearrange('b (n d) -> b n d', n = num_image_tokens)
) if image_embed_dim != cond_dim else nn.Identity()
) if cond_on_image_embeds and image_embed_dim != cond_dim else nn.Identity()
self.norm_cond = nn.LayerNorm(cond_dim)
self.norm_mid_cond = nn.LayerNorm(cond_dim)
@@ -1387,7 +1390,8 @@ class Unet(nn.Module):
self.text_to_cond = None
if cond_on_text_encodings:
self.text_to_cond = nn.LazyLinear(cond_dim) if not exists(text_embed_dim) else nn.Linear(text_embed_dim, cond_dim)
assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text_encodings is True'
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
# finer control over whether to condition on image embeddings and text encodings
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
@@ -1701,7 +1705,7 @@ class Decoder(BaseGaussianDiffusion):
self.unconditional = unconditional
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
assert exists(clip) ^ exists(image_size), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
assert self.unconditional or (exists(clip) ^ exists(image_size)), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
self.clip = None
if exists(clip):
@@ -1792,6 +1796,7 @@ class Decoder(BaseGaussianDiffusion):
self.image_cond_drop_prob = image_cond_drop_prob
self.text_cond_drop_prob = text_cond_drop_prob
self.can_classifier_guidance = image_cond_drop_prob > 0. or text_cond_drop_prob > 0.
# whether to clip when sampling
@@ -1818,6 +1823,8 @@ class Decoder(BaseGaussianDiffusion):
unet.cpu()
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img))
if learned_variance:
@@ -2036,12 +2043,12 @@ class Decoder(BaseGaussianDiffusion):
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
if not exists(image_embed):
if not exists(image_embed) and not self.unconditional:
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
image_embed, _ = self.clip.embed_image(image)
text_encodings = text_mask = None
if exists(text) and not exists(text_encodings):
if exists(text) and not exists(text_encodings) and not self.unconditional:
assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder'
_, text_encodings, text_mask = self.clip.embed_text(text)
@@ -2093,6 +2100,7 @@ class DALLE2(nn.Module):
self,
text,
cond_scale = 1.,
prior_cond_scale = 1.,
return_pil_images = False
):
device = next(self.parameters()).device
@@ -2102,7 +2110,7 @@ class DALLE2(nn.Module):
text = [text] if not isinstance(text, (list, tuple)) else text
text = tokenizer.tokenize(text).to(device)
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples)
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
text_cond = text if self.decoder_need_text_cond else None
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)

View File

@@ -1,7 +1,7 @@
import time
import copy
from math import ceil
from functools import partial
from functools import partial, wraps
from collections.abc import Iterable
import torch
@@ -11,6 +11,8 @@ from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
from dalle2_pytorch.optimizer import get_optimizer
import numpy as np
# helper functions
def exists(val):
@@ -45,6 +47,29 @@ def groupby_prefix_and_trim(prefix, d):
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# decorators
def cast_torch_tensor(fn):
@wraps(fn)
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', next(model.parameters()).device)
cast_device = kwargs.pop('_cast_device', True)
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
split_kwargs_index = len(all_args) - len(kwargs_keys)
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
out = fn(model, *args, **kwargs)
return out
return inner
# gradient accumulation functions
def split_iterable(it, split_size):
@@ -254,10 +279,12 @@ class DiffusionPriorTrainer(nn.Module):
self.step += 1
@torch.inference_mode()
@cast_torch_tensor
def p_sample_loop(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
@torch.inference_mode()
@cast_torch_tensor
def sample(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
@@ -265,6 +292,7 @@ class DiffusionPriorTrainer(nn.Module):
def sample_batch_size(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
@cast_torch_tensor
def forward(
self,
*args,
@@ -307,11 +335,6 @@ class DecoderTrainer(nn.Module):
self.num_unets = len(self.decoder.unets)
self.use_ema = use_ema
if use_ema:
has_lazy_linear = any([type(module) == nn.LazyLinear for module in decoder.modules()])
assert not has_lazy_linear, 'you must set the text_embed_dim on your u-nets if you plan on doing automatic exponential moving average'
self.ema_unets = nn.ModuleList([])
self.amp = amp
@@ -377,6 +400,7 @@ class DecoderTrainer(nn.Module):
self.step += 1
@torch.no_grad()
@cast_torch_tensor
def sample(self, *args, **kwargs):
if self.use_ema:
trainable_unets = self.decoder.unets
@@ -393,6 +417,7 @@ class DecoderTrainer(nn.Module):
return output
@cast_torch_tensor
def forward(
self,
*args,

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.2.32',
version = '0.2.38',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -30,6 +30,7 @@ setup(
'einops-exts>=0.0.3',
'embedding-reader',
'kornia>=0.5.4',
'numpy',
'pillow',
'resize-right>=0.0.2',
'rotary-embedding-torch',