mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ff3474f05c | ||
|
|
d5293f19f1 | ||
|
|
e697183849 | ||
|
|
591d37e266 | ||
|
|
d1f02e8f49 | ||
|
|
9faab59b23 | ||
|
|
5d27029e98 | ||
|
|
3115fa17b3 |
@@ -1017,6 +1017,7 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
|
||||
## Citations
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
from inspect import isfunction
|
||||
from functools import partial
|
||||
from functools import partial, wraps
|
||||
from contextlib import contextmanager
|
||||
from collections import namedtuple
|
||||
from pathlib import Path
|
||||
@@ -45,6 +45,14 @@ def exists(val):
|
||||
def identity(t, *args, **kwargs):
|
||||
return t
|
||||
|
||||
def maybe(fn):
|
||||
@wraps(fn)
|
||||
def inner(x):
|
||||
if not exists(x):
|
||||
return x
|
||||
return fn(x)
|
||||
return inner
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
@@ -114,10 +122,10 @@ def resize_image_to(image, target_image_size):
|
||||
# ddpms expect images to be in the range of -1 to 1
|
||||
# but CLIP may otherwise
|
||||
|
||||
def normalize_img(img):
|
||||
def normalize_neg_one_to_one(img):
|
||||
return img * 2 - 1
|
||||
|
||||
def unnormalize_img(normed_img):
|
||||
def unnormalize_zero_to_one(normed_img):
|
||||
return (normed_img + 1) * 0.5
|
||||
|
||||
# clip related adapters
|
||||
@@ -606,7 +614,6 @@ class Attention(nn.Module):
|
||||
heads = 8,
|
||||
dropout = 0.,
|
||||
causal = False,
|
||||
post_norm = False,
|
||||
rotary_emb = None
|
||||
):
|
||||
super().__init__()
|
||||
@@ -616,7 +623,6 @@ class Attention(nn.Module):
|
||||
|
||||
self.causal = causal
|
||||
self.norm = LayerNorm(dim)
|
||||
self.post_norm = LayerNorm(dim) # sandwich norm from Coqview paper + Normformer
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
||||
@@ -627,7 +633,7 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim, bias = False),
|
||||
LayerNorm(dim) if post_norm else nn.Identity()
|
||||
LayerNorm(dim)
|
||||
)
|
||||
|
||||
def forward(self, x, mask = None, attn_bias = None):
|
||||
@@ -684,8 +690,7 @@ class Attention(nn.Module):
|
||||
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
||||
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = self.to_out(out)
|
||||
return self.post_norm(out)
|
||||
return self.to_out(out)
|
||||
|
||||
class CausalTransformer(nn.Module):
|
||||
def __init__(
|
||||
@@ -711,7 +716,7 @@ class CausalTransformer(nn.Module):
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, post_norm = normformer, rotary_emb = rotary_emb),
|
||||
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_emb = rotary_emb),
|
||||
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
|
||||
]))
|
||||
|
||||
@@ -1037,7 +1042,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
assert not (self.condition_on_text_encodings and (not exists(text_encodings) and not exists(text))), 'text encodings must be present if you specified you wish to condition on it on initialization'
|
||||
|
||||
if exists(image):
|
||||
image_embed, _ = self.clip.embed_image(unnormalize_img(image))
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
# calculate text conditionings, based on what is passed in
|
||||
|
||||
@@ -1158,6 +1163,7 @@ class CrossAttention(nn.Module):
|
||||
dim_head = 64,
|
||||
heads = 8,
|
||||
dropout = 0.,
|
||||
norm_context = False
|
||||
):
|
||||
super().__init__()
|
||||
self.scale = dim_head ** -0.5
|
||||
@@ -1167,13 +1173,17 @@ class CrossAttention(nn.Module):
|
||||
context_dim = default(context_dim, dim)
|
||||
|
||||
self.norm = LayerNorm(dim)
|
||||
self.norm_context = LayerNorm(context_dim)
|
||||
self.norm_context = LayerNorm(context_dim) if norm_context else nn.Identity()
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim, bias = False),
|
||||
LayerNorm(dim)
|
||||
)
|
||||
|
||||
def forward(self, x, context, mask = None):
|
||||
b, n, device = *x.shape[:2], x.device
|
||||
@@ -1369,6 +1379,9 @@ class Unet(nn.Module):
|
||||
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
||||
) if image_embed_dim != cond_dim else nn.Identity()
|
||||
|
||||
self.norm_cond = nn.LayerNorm(cond_dim)
|
||||
self.norm_mid_cond = nn.LayerNorm(cond_dim)
|
||||
|
||||
# text encoding conditioning (optional)
|
||||
|
||||
self.text_to_cond = None
|
||||
@@ -1584,6 +1597,11 @@ class Unet(nn.Module):
|
||||
|
||||
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
||||
|
||||
# normalize conditioning tokens
|
||||
|
||||
c = self.norm_cond(c)
|
||||
mid_c = self.norm_mid_cond(mid_c)
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
hiddens = []
|
||||
@@ -1821,7 +1839,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
# eq 15 - https://arxiv.org/abs/2102.09672
|
||||
min_log = extract(self.posterior_log_variance_clipped, t, x.shape)
|
||||
max_log = extract(torch.log(self.betas), t, x.shape)
|
||||
var_interp_frac = unnormalize_img(var_interp_frac_unnormalized)
|
||||
var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized)
|
||||
|
||||
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
|
||||
posterior_variance = posterior_log_variance.exp()
|
||||
@@ -1844,6 +1862,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
@@ -1859,11 +1879,19 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
|
||||
return img
|
||||
unnormalize_img = unnormalize_zero_to_one(img)
|
||||
return unnormalize_img
|
||||
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
|
||||
# normalize to [-1, 1]
|
||||
|
||||
x_start = normalize_neg_one_to_one(x_start)
|
||||
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||
|
||||
# get x_t
|
||||
|
||||
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
|
||||
|
||||
model_output = unet(
|
||||
@@ -2011,7 +2039,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
if not exists(image_embed):
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
image_embed, _ = self.clip.embed_image(unnormalize_img(image))
|
||||
image_embed, _ = self.clip.embed_image(image)
|
||||
|
||||
text_encodings = text_mask = None
|
||||
if exists(text) and not exists(text_encodings):
|
||||
|
||||
@@ -7,16 +7,17 @@ def separate_weight_decayable_params(params):
|
||||
|
||||
def get_optimizer(
|
||||
params,
|
||||
lr = 3e-4,
|
||||
lr = 2e-5,
|
||||
wd = 1e-2,
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
filter_by_requires_grad = False
|
||||
):
|
||||
if filter_by_requires_grad:
|
||||
params = list(filter(lambda t: t.requires_grad, params))
|
||||
|
||||
if wd == 0:
|
||||
return Adam(params, lr = lr, betas = betas)
|
||||
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||
|
||||
params = set(params)
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
@@ -26,4 +27,4 @@ def get_optimizer(
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)
|
||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -90,7 +90,7 @@ class EMA(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
beta = 0.99,
|
||||
beta = 0.9999,
|
||||
update_after_step = 1000,
|
||||
update_every = 10,
|
||||
):
|
||||
@@ -147,6 +147,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
use_ema = True,
|
||||
lr = 3e-4,
|
||||
wd = 1e-2,
|
||||
eps = 1e-6,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
**kwargs
|
||||
@@ -173,6 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
diffusion_prior.parameters(),
|
||||
lr = lr,
|
||||
wd = wd,
|
||||
eps = eps,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@@ -221,8 +223,9 @@ class DecoderTrainer(nn.Module):
|
||||
self,
|
||||
decoder,
|
||||
use_ema = True,
|
||||
lr = 3e-4,
|
||||
lr = 2e-5,
|
||||
wd = 1e-2,
|
||||
eps = 1e-8,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
**kwargs
|
||||
@@ -247,13 +250,14 @@ class DecoderTrainer(nn.Module):
|
||||
# be able to finely customize learning rate, weight decay
|
||||
# per unet
|
||||
|
||||
lr, wd = map(partial(cast_tuple, length = self.num_unets), (lr, wd))
|
||||
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
|
||||
|
||||
for ind, (unet, unet_lr, unet_wd) in enumerate(zip(self.decoder.unets, lr, wd)):
|
||||
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user