Compare commits

...

2 Commits

Author SHA1 Message Date
Phil Wang
dde51fd362 revert restriction for classifier free guidance for diffusion prior, given @crowsonkb advice 2022-05-07 20:55:41 -07:00
Nasir Khalid
2eac7996fa Additional image_embed metric (#75)
Added metric to track image_embed vs predicted_image_embed
2022-05-07 14:32:33 -07:00
3 changed files with 6 additions and 2 deletions

View File

@@ -834,7 +834,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.image_embed_dim = default(image_embed_dim, lambda: clip.dim_latent)
self.channels = default(image_channels, lambda: clip.image_channels)
self.cond_drop_prob = cond_drop_prob if not predict_x_start else 0.
self.cond_drop_prob = cond_drop_prob
self.condition_on_text_encodings = condition_on_text_encodings
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.1.9',
version = '0.1.10',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',

View File

@@ -93,6 +93,8 @@ def report_cosine_sims(diffusion_prior, image_reader, text_reader, train_set_siz
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
wandb.log(
{"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity)})
@@ -100,6 +102,8 @@ def report_cosine_sims(diffusion_prior, image_reader, text_reader, train_set_siz
predicted_similarity)})
wandb.log({"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(
unrelated_similarity)})
wandb.log({"CosineSimilarity(image_embed,predicted_image_embed)": np.mean(
predicted_img_similarity)})
return np.mean(predicted_similarity - original_similarity)