mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dde51fd362 | ||
|
|
2eac7996fa |
@@ -834,7 +834,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
self.image_embed_dim = default(image_embed_dim, lambda: clip.dim_latent)
|
||||
self.channels = default(image_channels, lambda: clip.image_channels)
|
||||
|
||||
self.cond_drop_prob = cond_drop_prob if not predict_x_start else 0.
|
||||
self.cond_drop_prob = cond_drop_prob
|
||||
self.condition_on_text_encodings = condition_on_text_encodings
|
||||
|
||||
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
|
||||
|
||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.1.9',
|
||||
version = '0.1.10',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -93,6 +93,8 @@ def report_cosine_sims(diffusion_prior, image_reader, text_reader, train_set_siz
|
||||
text_embed, predicted_image_embeddings).cpu().numpy()
|
||||
unrelated_similarity = cos(
|
||||
text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
predicted_img_similarity = cos(
|
||||
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
|
||||
wandb.log(
|
||||
{"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity)})
|
||||
@@ -100,6 +102,8 @@ def report_cosine_sims(diffusion_prior, image_reader, text_reader, train_set_siz
|
||||
predicted_similarity)})
|
||||
wandb.log({"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(
|
||||
unrelated_similarity)})
|
||||
wandb.log({"CosineSimilarity(image_embed,predicted_image_embed)": np.mean(
|
||||
predicted_img_similarity)})
|
||||
|
||||
return np.mean(predicted_similarity - original_similarity)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user