Compare commits

...

4 Commits

Author SHA1 Message Date
Phil Wang
4010aec033 turn off classifier free guidance if predicting x_start for diffusion prior 2022-05-07 09:38:17 -07:00
Phil Wang
c87b84a259 todo 2022-05-07 09:21:08 -07:00
Phil Wang
8b05468653 todo 2022-05-07 08:33:45 -07:00
Phil Wang
830afd3c15 sinusoidal embed time embeddings for diffusion prior as well, for continuous version 2022-05-07 08:32:43 -07:00
3 changed files with 6 additions and 4 deletions

View File

@@ -981,6 +981,8 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] offer setting in diffusion prior to split time and image embeddings into multiple tokens, configurable, for more surface area during attention
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
## Citations

View File

@@ -706,7 +706,7 @@ class DiffusionPriorNetwork(nn.Module):
**kwargs
):
super().__init__()
self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(Rearrange('b -> b 1'), MLP(1, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(SinusoidalPosEmb(dim), MLP(dim, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.learned_query = nn.Parameter(torch.randn(dim))
self.causal_transformer = CausalTransformer(dim = dim, **kwargs)
@@ -800,7 +800,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
image_size = None,
image_channels = 3,
timesteps = 1000,
cond_drop_prob = 0.2,
cond_drop_prob = 0.,
loss_type = "l1",
predict_x_start = True,
beta_schedule = "cosine",
@@ -834,7 +834,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.image_embed_dim = default(image_embed_dim, lambda: clip.dim_latent)
self.channels = default(image_channels, lambda: clip.image_channels)
self.cond_drop_prob = cond_drop_prob
self.cond_drop_prob = cond_drop_prob if not predict_x_start else 0.
self.condition_on_text_encodings = condition_on_text_encodings
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.1.7',
version = '0.1.9',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',