Compare commits

..

1 Commits
0.1.4 ... 0.1.5

Author SHA1 Message Date
Phil Wang
3676ef4d49 make sure vqgan-vae trainer supports mixed precision 2022-05-06 10:44:16 -07:00
2 changed files with 29 additions and 18 deletions

View File

@@ -3,14 +3,15 @@ import copy
from random import choice
from pathlib import Path
from shutil import rmtree
from PIL import Image
import torch
from torch import nn
from PIL import Image
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as T
from torchvision.datasets import ImageFolder
from torchvision.utils import make_grid, save_image
from einops import rearrange
@@ -99,6 +100,7 @@ class VQGanVAETrainer(nn.Module):
ema_update_after_step = 2000,
ema_update_every = 10,
apply_grad_penalty_every = 4,
amp = False
):
super().__init__()
assert isinstance(vae, VQGanVAE), 'vae must be instance of VQGanVAE'
@@ -120,6 +122,10 @@ class VQGanVAETrainer(nn.Module):
self.optim = get_optimizer(vae_parameters, lr = lr, wd = wd)
self.discr_optim = get_optimizer(discr_parameters, lr = lr, wd = wd)
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.discr_scaler = GradScaler(enabled = amp)
# create dataset
self.ds = ImageDataset(folder, image_size = image_size)
@@ -178,20 +184,22 @@ class VQGanVAETrainer(nn.Module):
img = next(self.dl)
img = img.to(device)
loss = self.vae(
img,
return_loss = True,
apply_grad_penalty = apply_grad_penalty
)
with autocast(enabled = self.amp):
loss = self.vae(
img,
return_loss = True,
apply_grad_penalty = apply_grad_penalty
)
self.scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'loss': loss.item() / self.grad_accum_every})
(loss / self.grad_accum_every).backward()
self.optim.step()
self.scaler.step(self.optim)
self.scaler.update()
self.optim.zero_grad()
# update discriminator
if exists(self.vae.discr):
@@ -200,12 +208,15 @@ class VQGanVAETrainer(nn.Module):
img = next(self.dl)
img = img.to(device)
loss = self.vae(img, return_discr_loss = True)
with autocast(enabled = self.amp):
loss = self.vae(img, return_discr_loss = True)
self.discr_scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'discr_loss': loss.item() / self.grad_accum_every})
(loss / self.grad_accum_every).backward()
self.discr_optim.step()
self.discr_scaler.step(self.discr_optim)
self.discr_scaler.update()
self.discr_optim.zero_grad()
# log

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.1.4',
version = '0.1.5',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',