Compare commits

...

5 Commits

4 changed files with 23 additions and 216 deletions

View File

@@ -10,7 +10,7 @@ The main novelty seems to be an extra layer of indirection with the prior networ
This model is SOTA for text-to-image for now.
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication with the <a href="https://laion.ai/">LAION</a> community | <a href="https://www.youtube.com/watch?v=AIOE1l1W0Tw">Yannic Interview</a>
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
@@ -866,14 +866,6 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@inproceedings{Liu2022ACF,
title = {A ConvNet for the 2020s},
author = {Zhuang Liu and Hanzi Mao and Chaozheng Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
year = {2022}
}
```
```bibtex
@article{shen2019efficient,
author = {Zhuoran Shen and Mingyuan Zhang and Haiyu Zhao and Shuai Yi and Hongsheng Li},

View File

@@ -21,6 +21,8 @@ import kornia.augmentation as K
from dalle2_pytorch.tokenizer import tokenizer
from dalle2_pytorch.vqgan_vae import NullVQGanVAE, VQGanVAE
from resize_right import resize
# use x-clip
from x_clip import CLIP
@@ -86,14 +88,14 @@ def freeze_model_and_make_eval_(model):
def l2norm(t):
return F.normalize(t, dim = -1)
def resize_image_to(t, image_size, mode = 'bilinear'): # take a look at https://github.com/assafshocher/ResizeRight
shape = cast_tuple(image_size, 2)
orig_image_size = t.shape[-2:]
def resize_image_to(image, target_image_size):
orig_image_size = image.shape[-1]
if orig_image_size == shape:
return t
if orig_image_size == target_image_size:
return image
return F.interpolate(t, size = shape, mode = mode, align_corners = False)
scale_factors = target_image_size / orig_image_size
return resize(image, scale_factors = scale_factors)
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
@@ -805,7 +807,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
@torch.inference_mode()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised)
@@ -814,7 +816,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
@torch.inference_mode()
def p_sample_loop(self, shape, text_cond):
device = self.betas.device
@@ -842,7 +844,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
loss = self.loss_fn(pred, target)
return loss
@torch.no_grad()
@torch.inference_mode()
@eval_decorator
def sample(self, text, num_samples_per_batch = 2):
# in the paper, what they did was
@@ -997,68 +999,6 @@ class ResnetBlock(nn.Module):
h = self.block2(h)
return h + self.res_conv(x)
class ConvNextBlock(nn.Module):
""" https://arxiv.org/abs/2201.03545 """
def __init__(
self,
dim,
dim_out,
*,
cond_dim = None,
time_cond_dim = None,
mult = 2
):
super().__init__()
need_projection = dim != dim_out
self.cross_attn = None
if exists(cond_dim):
self.cross_attn = EinopsToAndFrom(
'b c h w',
'b (h w) c',
CrossAttention(
dim = dim,
context_dim = cond_dim
)
)
self.time_mlp = None
if exists(time_cond_dim):
self.time_mlp = nn.Sequential(
nn.GELU(),
nn.Linear(time_cond_dim, dim)
)
self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim)
inner_dim = int(dim_out * mult)
self.net = nn.Sequential(
ChanLayerNorm(dim),
nn.Conv2d(dim, inner_dim, 3, padding = 1),
nn.GELU(),
nn.Conv2d(inner_dim, dim_out, 3, padding = 1)
)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if need_projection else nn.Identity()
def forward(self, x, cond = None, time = None):
h = self.ds_conv(x)
if exists(time) and exists(self.time_mlp):
t = self.time_mlp(time)
h = rearrange(t, 'b c -> b c 1 1') + h
if exists(self.cross_attn):
assert exists(cond)
h = self.cross_attn(h, context = cond) + h
h = self.net(h)
return h + self.res_conv(x)
class CrossAttention(nn.Module):
def __init__(
self,
@@ -1198,7 +1138,6 @@ class Unet(nn.Module):
init_conv_kernel_size = 7,
block_type = 'resnet',
block_resnet_groups = 8,
block_convnext_mult = 2,
**kwargs
):
super().__init__()
@@ -1274,14 +1213,9 @@ class Unet(nn.Module):
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
# whether to use resnet or the (improved?) convnext blocks
# resnet block klass
if block_type == 'resnet':
block_klass = partial(ResnetBlock, groups = block_resnet_groups)
elif block_type == 'convnext':
block_klass = partial(ConvNextBlock, mult = block_convnext_mult)
else:
raise ValueError(f'unimplemented block type {block_type}')
block_klass = partial(ResnetBlock, groups = block_resnet_groups)
# layers
@@ -1477,13 +1411,11 @@ class Unet(nn.Module):
class LowresConditioner(nn.Module):
def __init__(
self,
cond_upsample_mode = 'bilinear',
downsample_first = True,
blur_sigma = 0.1,
blur_kernel_size = 3,
):
super().__init__()
self.cond_upsample_mode = cond_upsample_mode
self.downsample_first = downsample_first
self.blur_sigma = blur_sigma
self.blur_kernel_size = blur_kernel_size
@@ -1497,10 +1429,8 @@ class LowresConditioner(nn.Module):
blur_sigma = None,
blur_kernel_size = None
):
target_image_size = cast_tuple(target_image_size, 2)
if self.training and self.downsample_first and exists(downsample_image_size):
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, mode = self.cond_upsample_mode)
cond_fmap = resize_image_to(cond_fmap, downsample_image_size)
if self.training:
# when training, blur the low resolution conditional image
@@ -1508,7 +1438,7 @@ class LowresConditioner(nn.Module):
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
cond_fmap = resize_image_to(cond_fmap, target_image_size, mode = self.cond_upsample_mode)
cond_fmap = resize_image_to(cond_fmap, target_image_size)
return cond_fmap
@@ -1528,7 +1458,6 @@ class Decoder(BaseGaussianDiffusion):
predict_x_start_for_latent_diffusion = False,
image_sizes = None, # for cascading ddpm, image size at each stage
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
lowres_cond_upsample_mode = 'bilinear', # cascading ddpm - low resolution upsample mode
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
blur_sigma = 0.1, # cascading ddpm - blur sigma
blur_kernel_size = 3, # cascading ddpm - blur kernel size
@@ -1604,7 +1533,6 @@ class Decoder(BaseGaussianDiffusion):
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
self.to_lowres_cond = LowresConditioner(
cond_upsample_mode = lowres_cond_upsample_mode,
downsample_first = lowres_downsample_first,
blur_sigma = blur_sigma,
blur_kernel_size = blur_kernel_size,
@@ -1639,12 +1567,6 @@ class Decoder(BaseGaussianDiffusion):
yield
unet.cpu()
@torch.no_grad()
def get_image_embed(self, image):
image_embed, _ = self.clip.embed_image(image)
return image_embed
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
@@ -1659,7 +1581,7 @@ class Decoder(BaseGaussianDiffusion):
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
@torch.inference_mode()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
@@ -1668,7 +1590,7 @@ class Decoder(BaseGaussianDiffusion):
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
@torch.inference_mode()
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
device = self.betas.device
@@ -1712,7 +1634,7 @@ class Decoder(BaseGaussianDiffusion):
loss = self.loss_fn(pred, target)
return loss
@torch.no_grad()
@torch.inference_mode()
@eval_decorator
def sample(
self,
@@ -1808,7 +1730,7 @@ class Decoder(BaseGaussianDiffusion):
image = resize_image_to(image, target_image_size)
if exists(random_crop_size):
aug = K.RandomCrop((random_crop_size, random_crop_size))
aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.)
# make sure low res conditioner and image both get augmented the same way
# detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop
@@ -1845,7 +1767,7 @@ class DALLE2(nn.Module):
self.to_pil = T.ToPILImage()
@torch.no_grad()
@torch.inference_mode()
@eval_decorator
def forward(
self,

View File

@@ -331,112 +331,6 @@ class ResBlock(nn.Module):
def forward(self, x):
return self.net(x) + x
# convnext enc dec
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g
class ConvNext(nn.Module):
def __init__(self, dim, mult = 4, kernel_size = 3, ds_kernel_size = 7):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Conv2d(dim, dim, ds_kernel_size, padding = ds_kernel_size // 2, groups = dim),
ChanLayerNorm(dim),
nn.Conv2d(dim, inner_dim, kernel_size, padding = kernel_size // 2),
nn.GELU(),
nn.Conv2d(inner_dim, dim, kernel_size, padding = kernel_size // 2)
)
def forward(self, x):
return self.net(x) + x
class ConvNextEncDec(nn.Module):
def __init__(
self,
dim,
*,
channels = 3,
layers = 4,
layer_mults = None,
num_blocks = 1,
first_conv_kernel_size = 5,
use_attn = True,
attn_dim_head = 64,
attn_heads = 8,
attn_dropout = 0.,
):
super().__init__()
self.layers = layers
self.encoders = MList([])
self.decoders = MList([])
layer_mults = default(layer_mults, list(map(lambda t: 2 ** t, range(layers))))
assert len(layer_mults) == layers, 'layer multipliers must be equal to designated number of layers'
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
self.encoded_dim = dims[-1]
dim_pairs = zip(dims[:-1], dims[1:])
append = lambda arr, t: arr.append(t)
prepend = lambda arr, t: arr.insert(0, t)
if not isinstance(num_blocks, tuple):
num_blocks = (*((0,) * (layers - 1)), num_blocks)
if not isinstance(use_attn, tuple):
use_attn = (*((False,) * (layers - 1)), use_attn)
assert len(num_blocks) == layers, 'number of blocks config must be equal to number of layers'
assert len(use_attn) == layers
for layer_index, (dim_in, dim_out), layer_num_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_blocks, use_attn):
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu()))
if layer_use_attn:
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
for _ in range(layer_num_blocks):
append(self.encoders, ConvNext(dim_out))
prepend(self.decoders, ConvNext(dim_out))
if layer_use_attn:
append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2))
append(self.decoders, nn.Conv2d(dim, channels, 1))
def get_encoded_fmap_size(self, image_size):
return image_size // (2 ** self.layers)
@property
def last_dec_layer(self):
return self.decoders[-1].weight
def encode(self, x):
for enc in self.encoders:
x = enc(x)
return x
def decode(self, x):
for dec in self.decoders:
x = dec(x)
return x
# vqgan attention layer
class VQGanAttention(nn.Module):
@@ -682,8 +576,6 @@ class VQGanVAE(nn.Module):
enc_dec_klass = ResnetEncDec
elif vae_type == 'vit':
enc_dec_klass = ViTEncDec
elif vae_type == 'convnext':
enc_dec_klass = ConvNextEncDec
else:
raise ValueError(f'{vae_type} not valid')

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.97',
version = '0.0.101',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -29,6 +29,7 @@ setup(
'embedding-reader',
'kornia>=0.5.4',
'pillow',
'resize-right>=0.0.2',
'torch>=1.10',
'torchvision',
'tqdm',