mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 13:54:21 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8260fc933a | ||
|
|
ebe01749ed |
@@ -760,7 +760,7 @@ decoder = Decoder(
|
|||||||
unet = (unet1, unet2),
|
unet = (unet1, unet2),
|
||||||
image_sizes = (128, 256),
|
image_sizes = (128, 256),
|
||||||
clip = clip,
|
clip = clip,
|
||||||
timesteps = 1,
|
timesteps = 1000,
|
||||||
condition_on_text_encodings = True
|
condition_on_text_encodings = True
|
||||||
).cuda()
|
).cuda()
|
||||||
|
|
||||||
@@ -778,6 +778,12 @@ for unet_number in (1, 2):
|
|||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
||||||
|
|
||||||
|
# after much training
|
||||||
|
# you can sample from the exponentially moving averaged unets as so
|
||||||
|
|
||||||
|
mock_image_embed = torch.randn(4, 512).cuda()
|
||||||
|
images = decoder.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
|
||||||
```
|
```
|
||||||
|
|
||||||
## CLI (wip)
|
## CLI (wip)
|
||||||
|
|||||||
@@ -1540,7 +1540,13 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
@eval_decorator
|
@eval_decorator
|
||||||
def sample(self, image_embed, text = None, cond_scale = 1.):
|
def sample(
|
||||||
|
self,
|
||||||
|
image_embed,
|
||||||
|
text = None,
|
||||||
|
cond_scale = 1.,
|
||||||
|
stop_at_unet_number = None
|
||||||
|
):
|
||||||
batch_size = image_embed.shape[0]
|
batch_size = image_embed.shape[0]
|
||||||
|
|
||||||
text_encodings = text_mask = None
|
text_encodings = text_mask = None
|
||||||
@@ -1552,7 +1558,7 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
|
|
||||||
img = None
|
img = None
|
||||||
|
|
||||||
for unet, vae, channel, image_size, predict_x_start in tqdm(zip(self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
|
for unet_number, unet, vae, channel, image_size, predict_x_start in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
|
||||||
|
|
||||||
context = self.one_unet_in_gpu(unet = unet) if image_embed.is_cuda else null_context()
|
context = self.one_unet_in_gpu(unet = unet) if image_embed.is_cuda else null_context()
|
||||||
|
|
||||||
@@ -1584,6 +1590,9 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
|
|
||||||
img = vae.decode(img)
|
img = vae.decode(img)
|
||||||
|
|
||||||
|
if exists(stop_at_unet_number) and stop_at_unet_number == unet_number:
|
||||||
|
break
|
||||||
|
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
|||||||
@@ -144,6 +144,10 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
self.max_grad_norm = max_grad_norm
|
self.max_grad_norm = max_grad_norm
|
||||||
|
|
||||||
|
@property
|
||||||
|
def unets(self):
|
||||||
|
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
||||||
|
|
||||||
def scale(self, loss, *, unet_number):
|
def scale(self, loss, *, unet_number):
|
||||||
assert 1 <= unet_number <= self.num_unets
|
assert 1 <= unet_number <= self.num_unets
|
||||||
index = unet_number - 1
|
index = unet_number - 1
|
||||||
@@ -169,6 +173,18 @@ class DecoderTrainer(nn.Module):
|
|||||||
ema_unet = self.ema_unets[index]
|
ema_unet = self.ema_unets[index]
|
||||||
ema_unet.update()
|
ema_unet.update()
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample(self, *args, **kwargs):
|
||||||
|
if self.use_ema:
|
||||||
|
trainable_unets = self.decoder.unets
|
||||||
|
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||||
|
|
||||||
|
output = self.decoder.sample(*args, **kwargs)
|
||||||
|
|
||||||
|
if self.use_ema:
|
||||||
|
self.decoder.unets = trainable_unets # restore original training unets
|
||||||
|
return output
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x,
|
x,
|
||||||
|
|||||||
Reference in New Issue
Block a user