Compare commits

...

8 Commits

5 changed files with 299 additions and 24 deletions

View File

@@ -708,7 +708,83 @@ images = decoder.sample(mock_image_embed) # (1, 3, 1024, 1024)
## Training wrapper (wip)
Offer training wrappers
### Decoder Training
Training the `Decoder` may be confusing, as one needs to keep track of an optimizer for each of the `Unet`(s) separately. Each `Unet` will also need its own corresponding exponential moving average. The `DecoderTrainer` hopes to make this simple, as shown below
```python
import torch
from dalle2_pytorch import DALLE2, Unet, Decoder, CLIP, DecoderTrainer
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# decoder (with unet)
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_text_encodings = True
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 1000,
condition_on_text_encodings = True
).cuda()
decoder_trainer = DecoderTrainer(
decoder,
lr = 3e-4,
wd = 1e-2,
ema_beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
)
for unet_number in (1, 2):
loss = decoder_trainer(images, text = text, unet_number = unet_number) # use the decoder_trainer forward
loss.backward()
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
# after much training
# you can sample from the exponentially moving averaged unets as so
mock_image_embed = torch.randn(4, 512).cuda()
images = decoder.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
```
## CLI (wip)
@@ -741,6 +817,7 @@ Once built, images will be saved to the same directory the command is invoked
- [x] use inheritance just this once for sharing logic between decoder and prior network ddpms
- [x] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
- [x] abstract interface for CLIP adapter class, so other CLIPs can be brought in
- [x] take care of mixed precision as well as gradient accumulation within decoder trainer
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs

View File

@@ -1,5 +1,6 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.train import DecoderTrainer
from dalle2_pytorch.vqgan_vae import VQGanVAE
from x_clip import CLIP

View File

@@ -736,6 +736,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
predict_x_start = True,
beta_schedule = "cosine",
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
sampling_clamp_l2norm = False
):
super().__init__(
beta_schedule = beta_schedule,
@@ -764,6 +765,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.predict_x_start = predict_x_start
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
# whether to force an l2norm, similar to clipping denoised, when sampling
self.sampling_clamp_l2norm = sampling_clamp_l2norm
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
@@ -777,6 +781,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.)
if self.predict_x_start and self.sampling_clamp_l2norm:
x_recon = l2norm(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@@ -1090,7 +1097,12 @@ class Unet(nn.Module):
Rearrange('b (n d) -> b n d', n = num_image_tokens)
) if image_embed_dim != cond_dim else nn.Identity()
self.text_to_cond = nn.LazyLinear(cond_dim) if not exists(text_embed_dim) else nn.Linear(text_embed_dim, cond_dim)
# text encoding conditioning (optional)
self.text_to_cond = None
if cond_on_text_encodings:
self.text_to_cond = nn.LazyLinear(cond_dim) if not exists(text_embed_dim) else nn.Linear(text_embed_dim, cond_dim)
# finer control over whether to condition on image embeddings and text encodings
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
@@ -1101,6 +1113,8 @@ class Unet(nn.Module):
# for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.max_text_len = max_text_len
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
# attention related params
@@ -1185,6 +1199,7 @@ class Unet(nn.Module):
image_embed,
lowres_cond_img = None,
text_encodings = None,
text_mask = None,
image_cond_drop_prob = 0.,
text_cond_drop_prob = 0.,
blur_sigma = None,
@@ -1230,10 +1245,25 @@ class Unet(nn.Module):
if exists(text_encodings) and self.cond_on_text_encodings:
text_tokens = self.text_to_cond(text_encodings)
text_tokens = text_tokens[:, :self.max_text_len]
text_tokens_len = text_tokens.shape[1]
remainder = self.max_text_len - text_tokens_len
if remainder > 0:
text_tokens = F.pad(text_tokens, (0, 0, 0, remainder))
if exists(text_mask):
if remainder > 0:
text_mask = F.pad(text_mask, (0, remainder), value = False)
text_mask = rearrange(text_mask, 'b n -> b n 1')
text_keep_mask = text_mask & text_keep_mask
text_tokens = torch.where(
text_keep_mask,
text_tokens,
self.null_text_embed[:, :text_tokens.shape[1]]
self.null_text_embed
)
# main conditioning tokens (c)
@@ -1333,6 +1363,8 @@ class Decoder(BaseGaussianDiffusion):
blur_sigma = 0.1, # cascading ddpm - blur sigma
blur_kernel_size = 3, # cascading ddpm - blur kernel size
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
clip_denoised = True,
clip_x_start = True
):
super().__init__(
beta_schedule = beta_schedule,
@@ -1409,6 +1441,11 @@ class Decoder(BaseGaussianDiffusion):
self.image_cond_drop_prob = image_cond_drop_prob
self.text_cond_drop_prob = text_cond_drop_prob
# whether to clip when sampling
self.clip_denoised = clip_denoised
self.clip_x_start = clip_x_start
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
@@ -1434,31 +1471,31 @@ class Decoder(BaseGaussianDiffusion):
image_embed, _ = self.clip.embed_image(image)
return image_embed
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
if predict_x_start:
x_recon = pred
else:
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not predict_x_start:
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, lowres_cond_img = None, text_encodings = None, cond_scale = 1):
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1):
device = self.betas.device
b = shape[0]
@@ -1471,14 +1508,16 @@ class Decoder(BaseGaussianDiffusion):
torch.full((b,), i, device = device, dtype = torch.long),
image_embed = image_embed,
text_encodings = text_encodings,
text_mask = text_mask,
cond_scale = cond_scale,
lowres_cond_img = lowres_cond_img,
predict_x_start = predict_x_start
predict_x_start = predict_x_start,
clip_denoised = clip_denoised
)
return img
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None):
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
@@ -1488,6 +1527,7 @@ class Decoder(BaseGaussianDiffusion):
times,
image_embed = image_embed,
text_encodings = text_encodings,
text_mask = text_mask,
lowres_cond_img = lowres_cond_img,
image_cond_drop_prob = self.image_cond_drop_prob,
text_cond_drop_prob = self.text_cond_drop_prob,
@@ -1500,19 +1540,25 @@ class Decoder(BaseGaussianDiffusion):
@torch.no_grad()
@eval_decorator
def sample(self, image_embed, text = None, cond_scale = 1.):
def sample(
self,
image_embed,
text = None,
cond_scale = 1.,
stop_at_unet_number = None
):
batch_size = image_embed.shape[0]
text_encodings = None
text_encodings = text_mask = None
if exists(text):
_, text_encodings, _ = self.clip.embed_text(text)
_, text_encodings, text_mask = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
img = None
for unet, vae, channel, image_size, predict_x_start in tqdm(zip(self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
for unet_number, unet, vae, channel, image_size, predict_x_start in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
context = self.one_unet_in_gpu(unet = unet) if image_embed.is_cuda else null_context()
@@ -1523,6 +1569,7 @@ class Decoder(BaseGaussianDiffusion):
if unet.lowres_cond:
lowres_cond_img = self.to_lowres_cond(img, target_image_size = image_size)
is_latent_diffusion = isinstance(vae, VQGanVAE)
image_size = vae.get_encoded_fmap_size(image_size)
shape = (batch_size, vae.encoded_dim, image_size, image_size)
@@ -1534,13 +1581,18 @@ class Decoder(BaseGaussianDiffusion):
shape,
image_embed = image_embed,
text_encodings = text_encodings,
text_mask = text_mask,
cond_scale = cond_scale,
predict_x_start = predict_x_start,
clip_denoised = not is_latent_diffusion,
lowres_cond_img = lowres_cond_img
)
img = vae.decode(img)
if exists(stop_at_unet_number) and stop_at_unet_number == unet_number:
break
return img
def forward(
@@ -1571,9 +1623,9 @@ class Decoder(BaseGaussianDiffusion):
if not exists(image_embed):
image_embed, _ = self.clip.embed_image(image)
text_encodings = None
text_encodings = text_mask = None
if exists(text) and not exists(text_encodings):
_, text_encodings, _ = self.clip.embed_text(text)
_, text_encodings, text_mask = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
@@ -1588,7 +1640,7 @@ class Decoder(BaseGaussianDiffusion):
if exists(lowres_cond_img):
lowres_cond_img = vae.encode(lowres_cond_img)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start)
# main class

View File

@@ -1,6 +1,43 @@
import copy
from functools import partial
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder
from dalle2_pytorch.optimizer import get_optimizer
# helper functions
def exists(val):
return val is not None
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# exponential moving average wrapper
@@ -9,16 +46,16 @@ class EMA(nn.Module):
self,
model,
beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
update_after_step = 1000,
update_every = 10,
):
super().__init__()
self.beta = beta
self.online_model = model
self.ema_model = copy.deepcopy(model)
self.ema_update_after_step = ema_update_after_step # only start EMA after this step number, starting at 0
self.ema_update_every = ema_update_every
self.update_after_step = update_after_step # only start EMA after this step number, starting at 0
self.update_every = update_every
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
@@ -26,7 +63,7 @@ class EMA(nn.Module):
def update(self):
self.step += 1
if self.step <= self.ema_update_after_step or (self.step % self.ema_update_every) != 0:
if self.step <= self.update_after_step or (self.step % self.update_every) != 0:
return
if not self.initted:
@@ -51,3 +88,111 @@ class EMA(nn.Module):
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
# trainers
class DecoderTrainer(nn.Module):
def __init__(
self,
decoder,
use_ema = True,
lr = 3e-4,
wd = 1e-2,
max_grad_norm = None,
amp = False,
**kwargs
):
super().__init__()
assert isinstance(decoder, Decoder)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
self.decoder = decoder
self.num_unets = len(self.decoder.unets)
self.use_ema = use_ema
if use_ema:
has_lazy_linear = any([type(module) == nn.LazyLinear for module in decoder.modules()])
assert not has_lazy_linear, 'you must set the text_embed_dim on your u-nets if you plan on doing automatic exponential moving average'
self.ema_unets = nn.ModuleList([])
self.amp = amp
# be able to finely customize learning rate, weight decay
# per unet
lr, wd = map(partial(cast_tuple, length = self.num_unets), (lr, wd))
for ind, (unet, unet_lr, unet_wd) in enumerate(zip(self.decoder.unets, lr, wd)):
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
wd = unet_wd,
**kwargs
)
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = amp)
setattr(self, f'scaler{ind}', scaler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def scale(self, loss, *, unet_number):
assert 1 <= unet_number <= self.num_unets
index = unet_number - 1
scaler = getattr(self, f'scaler{index}')
return scaler.scale(loss)
def update(self, unet_number):
assert 1 <= unet_number <= self.num_unets
index = unet_number - 1
unet = self.decoder.unets[index]
if exists(self.max_grad_norm):
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if self.use_ema:
ema_unet = self.ema_unets[index]
ema_unet.update()
@torch.no_grad()
def sample(self, *args, **kwargs):
if self.use_ema:
trainable_unets = self.decoder.unets
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
output = self.decoder.sample(*args, **kwargs)
if self.use_ema:
self.decoder.unets = trainable_unets # restore original training unets
return output
def forward(
self,
x,
*,
unet_number,
divisor = 1,
**kwargs
):
with autocast(enabled = self.amp):
loss = self.decoder(x, unet_number = unet_number, **kwargs)
return self.scale(loss / divisor, unet_number = unet_number)

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.74',
version = '0.0.82',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',