Compare commits

..

4 Commits

Author SHA1 Message Date
Phil Wang
a389f81138 todo 2022-04-29 15:40:51 -07:00
Phil Wang
0283556608 fix example in readme, since api changed 2022-04-29 13:40:55 -07:00
Phil Wang
5063d192b6 now completely OpenAI CLIP compatible for training
just take care of the logic for AdamW and transformers

used namedtuples for clip adapter embedding outputs
2022-04-29 13:05:01 -07:00
Phil Wang
f4a54e475e add some training fns 2022-04-29 09:44:55 -07:00
5 changed files with 224 additions and 17 deletions

View File

@@ -430,8 +430,8 @@ images = torch.randn(4, 3, 256, 256).cuda()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = diffusion_prior.get_image_embed(images)
clip_text_embeds = diffusion_prior.get_text_cond(text).get('text_embed')
clip_image_embeds = diffusion_prior.clip.embed_image(images).image_embed
clip_text_embeds = diffusion_prior.clip.embed_text(text).text_embed
# feed text and images into diffusion prior network
@@ -495,6 +495,96 @@ loss.backward()
# now the diffusion prior can generate image embeddings from the text embeddings
```
## OpenAI CLIP
Although there is the possibility they are using an unreleased, more powerful CLIP, you can use one of the released ones, if you do not wish to train your own CLIP from scratch. This will also allow the community to more quickly validate the conclusions of the paper.
First you'll need to install <a href="https://github.com/openai/CLIP#usage">the prerequisites</a>
Then to use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it into the `DiffusionPrior` or `Decoder` like so
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
# openai pretrained clip - defaults to ViT/B-32
clip = OpenAIClipAdapter()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
loss = diffusion_prior(text, images)
loss.backward()
# do above for many steps ...
# decoder (with unet)
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16)
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
dalle2 = DALLE2(
prior = diffusion_prior,
decoder = decoder
)
images = dalle2(
['a butterfly trying to escape a tornado'],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
# save your image (in this example, of size 256x256)
```
Now you'll just have to worry about training the Prior and the Decoder!
## Experimental
### DALL-E2 with Latent Diffusion
@@ -651,6 +741,7 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] just take care of the training for the decoder in a wrapper class, as each unet in the cascade will need its own optimizer
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference

View File

@@ -1,4 +1,5 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.vqgan_vae import VQGanVAE
from x_clip import CLIP

View File

@@ -3,6 +3,7 @@ from tqdm import tqdm
from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
import torch
import torch.nn.functional as F
@@ -90,8 +91,21 @@ def resize_image_to(t, image_size, mode = 'bilinear'): # take a look at https://
return F.interpolate(t, size = shape, mode = mode, align_corners = False)
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
# but CLIP may otherwise
def normalize_img(img):
return img * 2 - 1
def unnormalize_img(normed_img):
return (normed_img + 1) * 0.5
# clip related adapters
EmbeddedText = namedtuple('EmbedTextReturn', ['text_embed', 'text_encodings', 'text_mask'])
EmbeddedImage = namedtuple('EmbedImageReturn', ['image_embed', 'image_encodings'])
class BaseClipAdapter(nn.Module):
def __init__(self, clip):
super().__init__()
@@ -109,6 +123,10 @@ class BaseClipAdapter(nn.Module):
def image_channels(self):
raise NotImplementedError
@property
def max_text_len(self):
raise NotImplementedError
def embed_text(self, text):
raise NotImplementedError
@@ -128,12 +146,18 @@ class XClipAdapter(BaseClipAdapter):
def image_channels(self):
return self.clip.image_channels
@property
def max_text_len(self):
return self.clip.text_seq_len
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
encoder_output = self.clip.text_transformer(text)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
return l2norm(text_embed), text_encodings
return EmbeddedText(l2norm(text_embed), text_encodings, text_mask)
@torch.no_grad()
def embed_image(self, image):
@@ -141,7 +165,73 @@ class XClipAdapter(BaseClipAdapter):
encoder_output = self.clip.visual_transformer(image)
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed), image_encodings
return EmbeddedImage(l2norm(image_embed), image_encodings)
class OpenAIClipAdapter(BaseClipAdapter):
def __init__(
self,
name = 'ViT-B/32'
):
try:
import clip
except ImportError:
print('you must install openai clip in order to use this adapter - `pip install git+https://github.com/openai/CLIP.git` - more instructions at https://github.com/openai/CLIP#usage')
openai_clip, _ = clip.load(name)
super().__init__(openai_clip)
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
self.clip_normalize = T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
self.cleared = False
def find_layer(self, layer):
modules = dict([*self.clip.named_modules()])
return modules.get(layer, None)
def clear(self):
if self.cleared:
return
self.handle()
def _hook(self, _, inputs, outputs):
self.text_encodings = outputs
@property
def dim_latent(self):
return 512
@property
def image_size(self):
return self.clip.visual.input_resolution
@property
def image_channels(self):
return 3
@property
def max_text_len(self):
return self.clip.context_length
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
assert not self.cleared
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
del self.text_encodings
return EmbeddedText(text_embed.float(), text_encodings.float(), text_mask)
@torch.no_grad()
def embed_image(self, image):
assert not self.cleared
image = resize_image_to(image, self.image_size)
image = self.clip_normalize(unnormalize_img(image))
image_embed = self.clip.encode_image(image)
return EmbeddedImage(image_embed.float(), None)
# classifier free guidance functions
@@ -741,12 +831,12 @@ class DiffusionPrior(BaseGaussianDiffusion):
batch_size = text.shape[0]
image_embed_dim = self.image_embed_dim
text_embed, text_encodings = self.clip.embed_text(text)
text_embed, text_encodings, text_mask = self.clip.embed_text(text)
text_cond = dict(text_embed = text_embed)
if self.condition_on_text_encodings:
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text != 0}
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
text_embeds = text_cond['text_embed']
@@ -783,8 +873,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# calculate text conditionings, based on what is passed in
if exists(text):
text_embed, text_encodings = self.clip.embed_text(text)
text_mask = text != 0
text_embed, text_encodings, text_mask = self.clip.embed_text(text)
text_cond = dict(text_embed = text_embed)
@@ -1341,11 +1430,8 @@ class Decoder(BaseGaussianDiffusion):
@torch.no_grad()
def get_image_embed(self, image):
image = resize_image_to(image, self.clip_image_size)
image_encoding = self.clip.visual_transformer(image)
image_cls = image_encoding[:, 0]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed)
image_embed, _ = self.clip.embed_image(image)
return image_embed
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
@@ -1417,7 +1503,7 @@ class Decoder(BaseGaussianDiffusion):
text_encodings = None
if exists(text):
_, text_encodings = self.clip.embed_text(text)
_, text_encodings, _ = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
@@ -1485,7 +1571,7 @@ class Decoder(BaseGaussianDiffusion):
text_encodings = None
if exists(text) and not exists(text_encodings):
_, text_encodings = self.clip.embed_text(text)
_, text_encodings, _ = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'

View File

@@ -0,0 +1,29 @@
from torch.optim import AdamW, Adam
def separate_weight_decayable_params(params):
no_wd_params = set([param for param in params if param.ndim < 2])
wd_params = set(params) - no_wd_params
return wd_params, no_wd_params
def get_optimizer(
params,
lr = 3e-4,
wd = 1e-2,
betas = (0.9, 0.999),
filter_by_requires_grad = False
):
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))
if wd == 0:
return Adam(params, lr = lr, betas = betas)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
param_groups = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.65',
version = '0.0.71',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -31,7 +31,7 @@ setup(
'torchvision',
'tqdm',
'vector-quantize-pytorch',
'x-clip>=0.4.4',
'x-clip>=0.5.1',
'youtokentome'
],
classifiers=[