Compare commits

...

2 Commits

2 changed files with 14 additions and 4 deletions

View File

@@ -7,6 +7,7 @@ from contextlib import contextmanager
import torch
import torch.nn.functional as F
from torch import nn, einsum
import torchvision.transforms as T
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
@@ -782,6 +783,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
text_cond = dict(text_embed = text_embed)
if self.condition_on_text_encodings:
assert exists(text_encodings), 'text encodings must be present for diffusion prior if specified'
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
# timestep conditioning from ddpm
@@ -791,8 +793,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# calculate forward loss
loss = self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs)
return loss
return self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs)
# decoder
@@ -1417,6 +1418,7 @@ class Decoder(BaseGaussianDiffusion):
_, text_encodings = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
img = None
@@ -1484,6 +1486,7 @@ class Decoder(BaseGaussianDiffusion):
_, text_encodings = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
lowres_cond_img = self.to_lowres_cond(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if unet_number > 1 else None
image = resize_image_to(image, target_image_size)
@@ -1516,12 +1519,15 @@ class DALLE2(nn.Module):
self.prior_num_samples = prior_num_samples
self.decoder_need_text_cond = self.decoder.condition_on_text_encodings
self.to_pil = T.ToPILImage()
@torch.no_grad()
@eval_decorator
def forward(
self,
text,
cond_scale = 1.
cond_scale = 1.,
return_pil_images = False
):
device = next(self.parameters()).device
one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1)
@@ -1535,7 +1541,11 @@ class DALLE2(nn.Module):
text_cond = text if self.decoder_need_text_cond else None
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
if return_pil_images:
images = list(map(self.to_pil, images.unbind(dim = 0)))
if one_text:
return images[0]
return images

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.58',
version = '0.0.60',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',