Compare commits

...

8 Commits

6 changed files with 357 additions and 235 deletions

View File

@@ -499,10 +499,12 @@ loss.backward()
### DALL-E2 with Latent Diffusion
This repository decides to take the next step and offer DALL-E2 combined with <a href="https://huggingface.co/spaces/multimodalart/latentdiffusion">latent diffusion</a>, from Rombach et al.
This repository decides to take the next step and offer DALL-E v2 combined with <a href="https://huggingface.co/spaces/multimodalart/latentdiffusion">latent diffusion</a>, from Rombach et al.
You can use it as follows. Latent diffusion can be limited to just the first U-Net in the cascade, or to any number you wish.
The repository also comes equipped with all the necessary settings to recreate `ViT-VQGan` from the <a href="https://arxiv.org/abs/2110.04627">Improved VQGans</a> paper. Furthermore, the <a href="https://github.com/lucidrains/vector-quantize-pytorch">vector quantization</a> library also comes equipped to do <a href="https://arxiv.org/abs/2203.01941">residual or multi-headed quantization</a>, which I believe will give an even further boost in performance to the autoencoder.
```python
import torch
from dalle2_pytorch import Unet, Decoder, CLIP, VQGanVAE
@@ -644,14 +646,15 @@ Once built, images will be saved to the same directory the command is invoked
- [x] for decoder, allow ability to customize objective (predict epsilon vs x0), in case latent diffusion does better with prediction of x0
- [x] use attention-based upsampling https://arxiv.org/abs/2112.11435
- [x] use inheritance just this once for sharing logic between decoder and prior network ddpms
- [ ] abstract interface for CLIP adapter class, so other CLIPs can be brought in
- [x] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
- [x] abstract interface for CLIP adapter class, so other CLIPs can be brought in
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] bring in tools to train vqgan-vae
- [ ] bring in vit-vqgan https://arxiv.org/abs/2110.04627 for the latent diffusion
## Citations
@@ -697,4 +700,14 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@article{Yu2021VectorquantizedIM,
title = {Vector-quantized Image Modeling with Improved VQGAN},
author = {Jiahui Yu and Xin Li and Jing Yu Koh and Han Zhang and Ruoming Pang and James Qin and Alexander Ku and Yuanzhong Xu and Jason Baldridge and Yonghui Wu},
journal = {ArXiv},
year = {2021},
volume = {abs/2110.04627}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>

View File

@@ -1,125 +0,0 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
class LayerNormChan(nn.Module):
def __init__(
self,
dim,
eps = 1e-5
):
super().__init__()
self.eps = eps
self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.gamma
# attention-based upsampling
# from https://arxiv.org/abs/2112.11435
class QueryAndAttend(nn.Module):
def __init__(
self,
*,
dim,
num_queries = 1,
dim_head = 32,
heads = 8,
window_size = 3
):
super().__init__()
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.heads = heads
self.dim_head = dim_head
self.window_size = window_size
self.num_queries = num_queries
self.rel_pos_bias = nn.Parameter(torch.randn(heads, num_queries, window_size * window_size, 1, 1))
self.queries = nn.Parameter(torch.randn(heads, num_queries, dim_head))
self.to_kv = nn.Conv2d(dim, dim_head * 2, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1, bias = False)
def forward(self, x):
"""
einstein notation
b - batch
h - heads
l - num queries
d - head dimension
x - height
y - width
j - source sequence for attending to (kernel size squared in this case)
"""
wsz, heads, dim_head, num_queries = self.window_size, self.heads, self.dim_head, self.num_queries
batch, _, height, width = x.shape
is_one_query = self.num_queries == 1
# queries, keys, values
q = self.queries * self.scale
k, v = self.to_kv(x).chunk(2, dim = 1)
# similarities
sim = einsum('h l d, b d x y -> b h l x y', q, k)
sim = rearrange(sim, 'b ... x y -> b (...) x y')
# unfold the similarity scores, with float(-inf) as padding value
mask_value = -torch.finfo(sim.dtype).max
sim = F.pad(sim, ((wsz // 2,) * 4), value = mask_value)
sim = F.unfold(sim, kernel_size = wsz)
sim = rearrange(sim, 'b (h l j) (x y) -> b h l j x y', h = heads, l = num_queries, x = height, y = width)
# rel pos bias
sim = sim + self.rel_pos_bias
# numerically stable attention
sim = sim - sim.amax(dim = -3, keepdim = True).detach()
attn = sim.softmax(dim = -3)
# unfold values
v = F.pad(v, ((wsz // 2,) * 4), value = 0.)
v = F.unfold(v, kernel_size = wsz)
v = rearrange(v, 'b (d j) (x y) -> b d j x y', d = dim_head, x = height, y = width)
# aggregate values
out = einsum('b h l j x y, b d j x y -> b l h d x y', attn, v)
# combine heads
out = rearrange(out, 'b l h d x y -> (b l) (h d) x y')
out = self.to_out(out)
out = rearrange(out, '(b l) d x y -> b l d x y', b = batch)
# return original input if one query
if is_one_query:
out = rearrange(out, 'b 1 ... -> b ...')
return out
class QueryAttnUpsample(nn.Module):
def __init__(self, dim, **kwargs):
super().__init__()
self.norm = LayerNormChan(dim)
self.qna = QueryAndAttend(dim = dim, num_queries = 4, **kwargs)
def forward(self, x):
x = self.norm(x)
out = self.qna(x)
out = rearrange(out, 'b (w1 w2) c h w -> b c (h w1) (w w2)', w1 = 2, w2 = 2)
return out

View File

@@ -17,7 +17,6 @@ from kornia.filters import gaussian_blur2d
from dalle2_pytorch.tokenizer import tokenizer
from dalle2_pytorch.vqgan_vae import NullVQGanVAE, VQGanVAE
from dalle2_pytorch.attention import QueryAttnUpsample
# use x-clip
@@ -36,6 +35,10 @@ def default(val, d):
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
@contextmanager
def null_context(*args, **kwargs):
yield
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
@@ -86,6 +89,59 @@ def resize_image_to(t, image_size, mode = 'bilinear'): # take a look at https://
return F.interpolate(t, size = shape, mode = mode, align_corners = False)
# clip related adapters
class BaseClipAdapter(nn.Module):
def __init__(self, clip):
super().__init__()
self.clip = clip
@property
def dim_latent(self):
raise NotImplementedError
@property
def image_size(self):
raise NotImplementedError
@property
def image_channels(self):
raise NotImplementedError
def embed_text(self, text):
raise NotImplementedError
def embed_image(self, image):
raise NotImplementedError
class XClipAdapter(BaseClipAdapter):
@property
def dim_latent(self):
return self.clip.dim_latent
@property
def image_size(self):
return self.clip.image_size
@property
def image_channels(self):
return self.clip.image_channels
@torch.no_grad()
def embed_text(self, text):
encoder_output = self.clip.text_transformer(text)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
return l2norm(text_embed), text_encodings
@torch.no_grad()
def embed_image(self, image):
image = resize_image_to(image, self.image_size)
encoder_output = self.clip.visual_transformer(image)
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed), image_encodings
# classifier free guidance functions
def prob_mask_like(shape, prob, device):
@@ -592,7 +648,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
if exists(clip):
assert isinstance(clip, CLIP)
freeze_model_and_make_eval_(clip)
self.clip = clip
self.clip = XClipAdapter(clip)
else:
assert exists(image_embed_dim), 'latent dimension must be given, if training prior network without CLIP given'
self.clip = None
@@ -607,29 +663,6 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.predict_x_start = predict_x_start
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
@torch.no_grad()
def get_image_embed(self, image):
assert exists(self.clip)
image_encoding = self.clip.visual_transformer(image)
image_cls = image_encoding[:, 0]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed)
@torch.no_grad()
def get_text_cond(self, text):
assert exists(self.clip)
text_encodings = self.clip.text_transformer(text)
text_cls, text_encodings = text_encodings[:, 0], text_encodings[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
text_embed = l2norm(text_embed)
if not self.condition_on_text_encodings:
return dict(text_embed = text_embed)
return dict(text_encodings = text_encodings, text_embed = text_embed, mask = text != 0)
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
@@ -701,7 +734,13 @@ class DiffusionPrior(BaseGaussianDiffusion):
batch_size = text.shape[0]
image_embed_dim = self.image_embed_dim
text_cond = self.get_text_cond(text)
text_embed, text_encodings = self.clip.embed_text(text)
text_cond = dict(
text_embed = text_embed,
text_encodings = text_encodings,
mask = text != 0
)
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
text_embeds = text_cond['text_embed']
@@ -733,18 +772,19 @@ class DiffusionPrior(BaseGaussianDiffusion):
assert not (self.condition_on_text_encodings and (not exists(text_encodings) and not exists(text))), 'text encodings must be present if you specified you wish to condition on it on initialization'
if exists(image):
image_embed = self.get_image_embed(image)
image_embed, _ = self.clip.embed_image(image)
# calculate text conditionings, based on what is passed in
if exists(text):
text_cond = self.get_text_cond(text)
else:
text_cond = dict(
text_embed = text_embed,
text_encodings = text_encodings,
mask = text_mask
)
text_embed, text_encodings = self.clip.embed_text(text)
text_mask = text != 0
text_cond = dict(
text_embed = text_embed,
text_encodings = text_encodings,
mask = text_mask
)
# timestep conditioning from ddpm
@@ -1205,7 +1245,9 @@ class Decoder(BaseGaussianDiffusion):
loss_type = loss_type
)
assert isinstance(clip, CLIP)
if isinstance(clip, CLIP):
clip = XClipAdapter(clip)
freeze_model_and_make_eval_(clip)
self.clip = clip
self.clip_image_size = clip.image_size
@@ -1287,10 +1329,6 @@ class Decoder(BaseGaussianDiffusion):
yield
unet.cpu()
@torch.no_grad()
def get_text_encodings(self, text):
text_encodings = self.clip.text_transformer(text)
return text_encodings[:, 1:]
@torch.no_grad()
def get_image_embed(self, image):
@@ -1376,14 +1414,19 @@ class Decoder(BaseGaussianDiffusion):
def sample(self, image_embed, text = None, cond_scale = 1.):
batch_size = image_embed.shape[0]
text_encodings = self.get_text_encodings(text) if exists(text) else None
text_encodings = None
if exists(text):
_, text_encodings = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
img = None
for unet, vae, channel, image_size, predict_x_start in tqdm(zip(self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
with self.one_unet_in_gpu(unet = unet):
context = self.one_unet_in_gpu(unet = unet) if image_embed.is_cuda else null_context()
with context:
lowres_cond_img = None
shape = (batch_size, channel, image_size, image_size)
@@ -1436,9 +1479,11 @@ class Decoder(BaseGaussianDiffusion):
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
if not exists(image_embed):
image_embed = self.get_image_embed(image)
image_embed, _ = self.clip.embed_image(image)
text_encodings = self.get_text_encodings(text) if exists(text) and not exists(text_encodings) else None
text_encodings = None
if exists(text) and not exists(text_encodings):
_, text_encodings = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'

View File

@@ -35,7 +35,7 @@ class EMA(nn.Module):
self.update_moving_average(self.ema_model, self.online_model)
def update_moving_average(ma_model, current_model):
def update_moving_average(self, ma_model, current_model):
def calculate_ema(beta, old, new):
if not exists(old):
return new

View File

@@ -12,8 +12,8 @@ from torch.autograd import grad as torch_grad
import torchvision
from einops import rearrange, reduce, repeat
from dalle2_pytorch.attention import QueryAttnUpsample
from einops_exts import rearrange_many
from einops.layers.torch import Rearrange
# constants
@@ -146,6 +146,8 @@ class LayerNormChan(nn.Module):
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.gamma
# discriminator
class Discriminator(nn.Module):
def __init__(
self,
@@ -179,6 +181,8 @@ class Discriminator(nn.Module):
return self.to_logits(x)
# positional encoding
class ContinuousPositionBias(nn.Module):
""" from https://arxiv.org/abs/2111.09883 """
@@ -213,6 +217,84 @@ class ContinuousPositionBias(nn.Module):
bias = rearrange(rel_pos, 'i j h -> h i j')
return x + bias
# resnet encoder / decoder
class ResnetEncDec(nn.Module):
def __init__(
self,
dim,
*,
channels = 3,
layers = 4,
layer_mults = None,
num_resnet_blocks = 1,
resnet_groups = 16,
first_conv_kernel_size = 5,
use_attn = True,
attn_dim_head = 64,
attn_heads = 8,
attn_dropout = 0.,
):
super().__init__()
assert dim % resnet_groups == 0, f'dimension {dim} must be divisible by {resnet_groups} (groups for the groupnorm)'
self.layers = layers
self.encoders = MList([])
self.decoders = MList([])
layer_mults = default(layer_mults, list(map(lambda t: 2 ** t, range(layers))))
assert len(layer_mults) == layers, 'layer multipliers must be equal to designated number of layers'
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
self.encoded_dim = dims[-1]
dim_pairs = zip(dims[:-1], dims[1:])
append = lambda arr, t: arr.append(t)
prepend = lambda arr, t: arr.insert(0, t)
if not isinstance(num_resnet_blocks, tuple):
num_resnet_blocks = (*((0,) * (layers - 1)), num_resnet_blocks)
if not isinstance(use_attn, tuple):
use_attn = (*((False,) * (layers - 1)), use_attn)
assert len(num_resnet_blocks) == layers, 'number of resnet blocks config must be equal to number of layers'
assert len(use_attn) == layers
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu()))
if layer_use_attn:
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
for _ in range(layer_num_resnet_blocks):
append(self.encoders, ResBlock(dim_out, groups = resnet_groups))
prepend(self.decoders, GLUResBlock(dim_out, groups = resnet_groups))
if layer_use_attn:
append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2))
append(self.decoders, nn.Conv2d(dim, channels, 1))
def get_encoded_fmap_size(self, image_size):
return image_size // (2 ** self.layers)
def encode(self, x):
for enc in self.encoders:
x = enc(x)
return x
def decode(self, x):
for dec in self.decoders:
x = dec(x)
return x
class GLUResBlock(nn.Module):
def __init__(self, chan, groups = 16):
super().__init__()
@@ -246,6 +328,7 @@ class ResBlock(nn.Module):
return self.net(x) + x
# vqgan attention layer
class VQGanAttention(nn.Module):
def __init__(
self,
@@ -290,6 +373,145 @@ class VQGanAttention(nn.Module):
return out + residual
# ViT encoder / decoder
class RearrangeImage(nn.Module):
def forward(self, x):
n = x.shape[1]
w = h = int(sqrt(n))
return rearrange(x, 'b (h w) ... -> b h w ...', h = h, w = w)
class Attention(nn.Module):
def __init__(
self,
dim,
*,
heads = 8,
dim_head = 32
):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
def forward(self, x):
h = self.heads
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
def FeedForward(dim, mult = 4):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * mult, bias = False),
nn.GELU(),
nn.Linear(dim * mult, dim, bias = False)
)
class Transformer(nn.Module):
def __init__(
self,
dim,
*,
layers,
dim_head = 32,
heads = 8,
ff_mult = 4
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(layers):
self.layers.append(nn.ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads),
FeedForward(dim = dim, mult = ff_mult)
]))
self.norm = nn.LayerNorm(dim)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class ViTEncDec(nn.Module):
def __init__(
self,
dim,
channels = 3,
layers = 4,
patch_size = 8,
dim_head = 32,
heads = 8,
ff_mult = 4
):
super().__init__()
self.encoded_dim = dim
self.patch_size = patch_size
input_dim = channels * (patch_size ** 2)
self.encoder = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(input_dim, dim),
Transformer(
dim = dim,
dim_head = dim_head,
heads = heads,
ff_mult = ff_mult,
layers = layers
),
RearrangeImage(),
Rearrange('b h w c -> b c h w')
)
self.decoder = nn.Sequential(
Rearrange('b c h w -> b (h w) c'),
Transformer(
dim = dim,
dim_head = dim_head,
heads = heads,
ff_mult = ff_mult,
layers = layers
),
nn.Sequential(
nn.Linear(dim, dim * 4, bias = False),
nn.Tanh(),
nn.Linear(dim * 4, input_dim, bias = False),
),
RearrangeImage(),
Rearrange('b h w (p1 p2 c) -> b c (h p1) (w p2)', p1 = patch_size, p2 = patch_size)
)
def get_encoded_fmap_size(self, image_size):
return image_size // self.patch_size
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.decoder(x)
# main vqgan-vae classes
class NullVQGanVAE(nn.Module):
def __init__(
self,
@@ -320,81 +542,43 @@ class VQGanVAE(nn.Module):
image_size,
channels = 3,
layers = 4,
layer_mults = None,
l2_recon_loss = False,
use_hinge_loss = True,
num_resnet_blocks = 1,
vgg = None,
vq_codebook_size = 512,
vq_decay = 0.8,
vq_commitment_weight = 1.,
vq_kmeans_init = True,
vq_use_cosine_sim = True,
use_attn = True,
attn_dim_head = 64,
attn_heads = 8,
resnet_groups = 16,
attn_dropout = 0.,
first_conv_kernel_size = 5,
use_vgg_and_gan = True,
vae_type = 'resnet',
discr_layers = 4,
**kwargs
):
super().__init__()
assert dim % resnet_groups == 0, f'dimension {dim} must be divisible by {resnet_groups} (groups for the groupnorm)'
vq_kwargs, kwargs = groupby_prefix_and_trim('vq_', kwargs)
encdec_kwargs, kwargs = groupby_prefix_and_trim('encdec_', kwargs)
self.image_size = image_size
self.channels = channels
self.layers = layers
self.fmap_size = image_size // (layers ** 2)
self.codebook_size = vq_codebook_size
self.encoders = MList([])
self.decoders = MList([])
if vae_type == 'resnet':
enc_dec_klass = ResnetEncDec
elif vae_type == 'vit':
enc_dec_klass = ViTEncDec
else:
raise ValueError(f'{vae_type} not valid')
layer_mults = default(layer_mults, list(map(lambda t: 2 ** t, range(layers))))
assert len(layer_mults) == layers, 'layer multipliers must be equal to designated number of layers'
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
codebook_dim = layer_dims[-1]
self.encoded_dim = dims[-1]
dim_pairs = zip(dims[:-1], dims[1:])
append = lambda arr, t: arr.append(t)
prepend = lambda arr, t: arr.insert(0, t)
if not isinstance(num_resnet_blocks, tuple):
num_resnet_blocks = (*((0,) * (layers - 1)), num_resnet_blocks)
if not isinstance(use_attn, tuple):
use_attn = (*((False,) * (layers - 1)), use_attn)
assert len(num_resnet_blocks) == layers, 'number of resnet blocks config must be equal to number of layers'
assert len(use_attn) == layers
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu()))
if layer_use_attn:
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
for _ in range(layer_num_resnet_blocks):
append(self.encoders, ResBlock(dim_out, groups = resnet_groups))
prepend(self.decoders, GLUResBlock(dim_out, groups = resnet_groups))
if layer_use_attn:
append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))
prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2))
append(self.decoders, nn.Conv2d(dim, channels, 1))
self.enc_dec = enc_dec_klass(
dim = dim,
channels = channels,
layers = layers,
**encdec_kwargs
)
self.vq = VQ(
dim = codebook_dim,
dim = self.enc_dec.encoded_dim,
codebook_size = vq_codebook_size,
decay = vq_decay,
commitment_weight = vq_commitment_weight,
@@ -427,13 +611,21 @@ class VQGanVAE(nn.Module):
# gan related losses
layer_mults = list(map(lambda t: 2 ** t, range(discr_layers)))
layer_dims = [dim * mult for mult in layer_mults]
dims = (dim, *layer_dims)
self.discr = Discriminator(dims = dims, channels = channels)
self.discr_loss = hinge_discr_loss if use_hinge_loss else bce_discr_loss
self.gen_loss = hinge_gen_loss if use_hinge_loss else bce_gen_loss
@property
def encoded_dim(self):
return self.enc_dec.encoded_dim
def get_encoded_fmap_size(self, image_size):
return image_size // (2 ** self.layers)
return self.enc_dec.get_encoded_fmap_size(image_size)
def copy_for_eval(self):
device = next(self.parameters()).device
@@ -459,16 +651,13 @@ class VQGanVAE(nn.Module):
return self.vq.codebook
def encode(self, fmap):
for enc in self.encoders:
fmap = enc(fmap)
fmap = self.enc_dec.encode(fmap)
return fmap
def decode(self, fmap, return_indices_and_loss = False):
fmap, indices, commit_loss = self.vq(fmap)
for dec in self.decoders:
fmap = dec(fmap)
fmap = self.enc_dec.decode(fmap)
if not return_indices_and_loss:
return fmap

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.52',
version = '0.0.57',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',