Compare commits

..

2 Commits
0.0.5 ... 0.0.6

Author SHA1 Message Date
Phil Wang
0692f1699f favorite quote 2022-04-13 18:17:59 -07:00
Phil Wang
26c4534bc3 readme 2022-04-13 18:11:55 -07:00

View File

@@ -214,8 +214,6 @@ Let's see the whole script below
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, CLIP
import torch
clip = CLIP(
dim_text = 512,
dim_image = 512,
@@ -303,6 +301,8 @@ images = dalle2(['cute puppy chasing after a squirrel'])
Everything in this readme should run without error
For the layperson, no worries, training will all be automated into a CLI tool, at least for small scale training.
## Training CLI (wip)
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
@@ -364,3 +364,5 @@ Everything in this readme should run without error
primaryClass = {cs.LG}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>