Compare commits

...

11 Commits

Author SHA1 Message Date
Phil Wang
4d25976f33 make sure non-latent diffusion still works 2022-04-26 08:36:00 -07:00
Phil Wang
0b28ee0d01 revert back to old upsampling, paper does not work 2022-04-26 07:39:04 -07:00
Phil Wang
45262a4bb7 bring in the exponential moving average wrapper, to get ready for training 2022-04-25 19:24:13 -07:00
Phil Wang
13a58a78c4 scratch off todo 2022-04-25 19:01:30 -07:00
Phil Wang
f75d49c781 start a file for all attention-related modules, use attention-based upsampling in the unets in dalle-2 2022-04-25 18:59:10 -07:00
Phil Wang
3b520dfa85 bring in attention-based upsampling to strengthen vqgan-vae, seems to work as advertised in initial experiments in GAN 2022-04-25 17:27:45 -07:00
Phil Wang
79198c6ae4 keep readme simple for reader 2022-04-25 17:21:45 -07:00
Phil Wang
77a246b1b9 todo 2022-04-25 08:48:28 -07:00
Phil Wang
f93a3f6ed8 reprioritize 2022-04-25 08:44:27 -07:00
Phil Wang
8f2a0c7e00 better naming 2022-04-25 07:44:33 -07:00
Phil Wang
863f4ef243 just take care of the logic for setting all latent diffusion to predict x0, if needed 2022-04-24 10:06:42 -07:00
6 changed files with 210 additions and 32 deletions

View File

@@ -12,7 +12,7 @@ This model is SOTA for text-to-image for now.
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
## Install
@@ -246,13 +246,6 @@ loss = decoder(images, unet_number = 2)
loss.backward()
# do the above for many steps for both unets
# then it will learn to generate images based on the CLIP image embeddings
# chaining the unets from lowest resolution to highest resolution (thus cascading)
mock_image_embed = torch.randn(1, 512).cuda()
images = decoder.sample(mock_image_embed) # (1, 3, 512, 512)
```
Finally, to generate the DALL-E2 images from text. Insert the trained `DiffusionPrior` as well as the `Decoder` (which wraps `CLIP`, the causal transformer, and unet(s))
@@ -530,9 +523,11 @@ Once built, images will be saved to the same directory the command is invoked
- [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [x] build out latent diffusion architecture, with the vq-reg variant (vqgan-vae), make it completely optional and compatible with cascading ddpms
- [x] for decoder, allow ability to customize objective (predict epsilon vs x0), in case latent diffusion does better with prediction of x0
- [x] use attention-based upsampling https://arxiv.org/abs/2112.11435
- [ ] spend one day cleaning up tech debt in decoder
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] bring in tools to train vqgan-vae
@@ -568,7 +563,7 @@ Once built, images will be saved to the same directory the command is invoked
```bibtex
@inproceedings{Liu2022ACF,
title = {A ConvNet for the 2020s},
title = {A ConvNet for the 2020https://arxiv.org/abs/2112.11435s},
author = {Zhuang Liu and Hanzi Mao and Chaozheng Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
year = {2022}
}

125
dalle2_pytorch/attention.py Normal file
View File

@@ -0,0 +1,125 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
class LayerNormChan(nn.Module):
def __init__(
self,
dim,
eps = 1e-5
):
super().__init__()
self.eps = eps
self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.gamma
# attention-based upsampling
# from https://arxiv.org/abs/2112.11435
class QueryAndAttend(nn.Module):
def __init__(
self,
*,
dim,
num_queries = 1,
dim_head = 32,
heads = 8,
window_size = 3
):
super().__init__()
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.heads = heads
self.dim_head = dim_head
self.window_size = window_size
self.num_queries = num_queries
self.rel_pos_bias = nn.Parameter(torch.randn(heads, num_queries, window_size * window_size, 1, 1))
self.queries = nn.Parameter(torch.randn(heads, num_queries, dim_head))
self.to_kv = nn.Conv2d(dim, dim_head * 2, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1, bias = False)
def forward(self, x):
"""
einstein notation
b - batch
h - heads
l - num queries
d - head dimension
x - height
y - width
j - source sequence for attending to (kernel size squared in this case)
"""
wsz, heads, dim_head, num_queries = self.window_size, self.heads, self.dim_head, self.num_queries
batch, _, height, width = x.shape
is_one_query = self.num_queries == 1
# queries, keys, values
q = self.queries * self.scale
k, v = self.to_kv(x).chunk(2, dim = 1)
# similarities
sim = einsum('h l d, b d x y -> b h l x y', q, k)
sim = rearrange(sim, 'b ... x y -> b (...) x y')
# unfold the similarity scores, with float(-inf) as padding value
mask_value = -torch.finfo(sim.dtype).max
sim = F.pad(sim, ((wsz // 2,) * 4), value = mask_value)
sim = F.unfold(sim, kernel_size = wsz)
sim = rearrange(sim, 'b (h l j) (x y) -> b h l j x y', h = heads, l = num_queries, x = height, y = width)
# rel pos bias
sim = sim + self.rel_pos_bias
# numerically stable attention
sim = sim - sim.amax(dim = -3, keepdim = True).detach()
attn = sim.softmax(dim = -3)
# unfold values
v = F.pad(v, ((wsz // 2,) * 4), value = 0.)
v = F.unfold(v, kernel_size = wsz)
v = rearrange(v, 'b (d j) (x y) -> b d j x y', d = dim_head, x = height, y = width)
# aggregate values
out = einsum('b h l j x y, b d j x y -> b l h d x y', attn, v)
# combine heads
out = rearrange(out, 'b l h d x y -> (b l) (h d) x y')
out = self.to_out(out)
out = rearrange(out, '(b l) d x y -> b l d x y', b = batch)
# return original input if one query
if is_one_query:
out = rearrange(out, 'b 1 ... -> b ...')
return out
class QueryAttnUpsample(nn.Module):
def __init__(self, dim, **kwargs):
super().__init__()
self.norm = LayerNormChan(dim)
self.qna = QueryAndAttend(dim = dim, num_queries = 4, **kwargs)
def forward(self, x):
x = self.norm(x)
out = self.qna(x)
out = rearrange(out, 'b (w1 w2) c h w -> b c (h w1) (w w2)', w1 = 2, w2 = 2)
return out

View File

@@ -17,6 +17,7 @@ from kornia.filters import gaussian_blur2d
from dalle2_pytorch.tokenizer import tokenizer
from dalle2_pytorch.vqgan_vae import NullVQGanVAE, VQGanVAE
from dalle2_pytorch.attention import QueryAttnUpsample
# use x-clip
@@ -483,7 +484,7 @@ class DiffusionPrior(nn.Module):
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = "l1",
predict_x0 = True,
predict_x_start = True,
beta_schedule = "cosine",
):
super().__init__()
@@ -497,7 +498,7 @@ class DiffusionPrior(nn.Module):
self.image_size = clip.image_size
self.cond_drop_prob = cond_drop_prob
self.predict_x0 = predict_x0
self.predict_x_start = predict_x_start
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
if beta_schedule == "cosine":
@@ -586,14 +587,14 @@ class DiffusionPrior(nn.Module):
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
if self.predict_x0:
if self.predict_x_start:
x_recon = pred
# not 100% sure of this above line - for any spectators, let me know in the github issues (or through a pull request) if you know how to correctly do this
# i'll be rereading https://arxiv.org/abs/2111.14822, where i think a similar approach is taken
else:
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not self.predict_x0:
if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
@@ -639,7 +640,7 @@ class DiffusionPrior(nn.Module):
**text_cond
)
to_predict = noise if not self.predict_x0 else image_embed
to_predict = noise if not self.predict_x_start else image_embed
if self.loss_type == 'l1':
loss = F.l1_loss(to_predict, x_recon)
@@ -1116,12 +1117,13 @@ class Decoder(nn.Module):
unet,
*,
clip,
vae = None,
vae = tuple(),
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = 'l1',
beta_schedule = 'cosine',
predict_x0 = False,
predict_x_start = False,
predict_x_start_for_latent_diffusion = False,
image_sizes = None, # for cascading ddpm, image size at each stage
lowres_cond_upsample_mode = 'bilinear', # cascading ddpm - low resolution upsample mode
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
@@ -1172,7 +1174,7 @@ class Decoder(nn.Module):
# predict x0 config
self.predict_x0 = cast_tuple(predict_x0, len(unets))
self.predict_x_start = cast_tuple(predict_x_start, len(unets)) if not predict_x_start_for_latent_diffusion else tuple(map(lambda t: isinstance(t, VQGanVAE), self.vaes))
# cascading ddpm related stuff
@@ -1292,31 +1294,31 @@ class Decoder(nn.Module):
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x0 = False, cond_scale = 1.):
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
if predict_x0:
if predict_x_start:
x_recon = pred
else:
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not predict_x0:
if clip_denoised and not predict_x_start:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x0 = False, clip_denoised = True, repeat_noise = False):
def p_sample(self, unet, x, t, image_embed, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x0 = predict_x0)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, unet, shape, image_embed, predict_x0 = False, lowres_cond_img = None, text_encodings = None, cond_scale = 1):
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, lowres_cond_img = None, text_encodings = None, cond_scale = 1):
device = self.betas.device
b = shape[0]
@@ -1331,7 +1333,7 @@ class Decoder(nn.Module):
text_encodings = text_encodings,
cond_scale = cond_scale,
lowres_cond_img = lowres_cond_img,
predict_x0 = predict_x0
predict_x_start = predict_x_start
)
return img
@@ -1344,7 +1346,7 @@ class Decoder(nn.Module):
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, unet, x_start, t, *, image_embed, lowres_cond_img = None, text_encodings = None, predict_x0 = False, noise = None):
def p_losses(self, unet, x_start, t, *, image_embed, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start = x_start, t = t, noise = noise)
@@ -1358,7 +1360,7 @@ class Decoder(nn.Module):
cond_drop_prob = self.cond_drop_prob
)
target = noise if not predict_x0 else x_start
target = noise if not predict_x_start else x_start
if self.loss_type == 'l1':
loss = F.l1_loss(target, x_recon)
@@ -1380,7 +1382,7 @@ class Decoder(nn.Module):
img = None
for unet, vae, channel, image_size, predict_x0 in tqdm(zip(self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x0)):
for unet, vae, channel, image_size, predict_x_start in tqdm(zip(self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start)):
with self.one_unet_in_gpu(unet = unet):
lowres_cond_img = None
shape = (batch_size, channel, image_size, image_size)
@@ -1400,7 +1402,7 @@ class Decoder(nn.Module):
image_embed = image_embed,
text_encodings = text_encodings,
cond_scale = cond_scale,
predict_x0 = predict_x0,
predict_x_start = predict_x_start,
lowres_cond_img = lowres_cond_img
)
@@ -1424,7 +1426,7 @@ class Decoder(nn.Module):
target_image_size = self.image_sizes[unet_index]
vae = self.vaes[unet_index]
predict_x0 = self.predict_x0[unet_index]
predict_x_start = self.predict_x_start[unet_index]
b, c, h, w, device, = *image.shape, image.device
@@ -1448,7 +1450,7 @@ class Decoder(nn.Module):
if exists(lowres_cond_img):
lowres_cond_img = vae.encode(lowres_cond_img)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x0 = predict_x0)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start)
# main class

View File

@@ -0,0 +1,53 @@
import copy
import torch
from torch import nn
# exponential moving average wrapper
class EMA(nn.Module):
def __init__(
self,
model,
beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
):
super().__init__()
self.beta = beta
self.online_model = model
self.ema_model = copy.deepcopy(model)
self.ema_update_after_step = ema_update_after_step # only start EMA after this step number, starting at 0
self.ema_update_every = ema_update_every
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
def update(self):
self.step += 1
if self.step <= self.ema_update_after_step or (self.step % self.ema_update_every) != 0:
return
if not self.initted:
self.ema_model.state_dict(self.online_model.state_dict())
self.initted.data.copy_(torch.Tensor([True]))
self.update_moving_average(self.ema_model, self.online_model)
def update_moving_average(ma_model, current_model):
def calculate_ema(beta, old, new):
if not exists(old):
return new
return old * beta + (1 - beta) * new
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = calculate_ema(self.beta, old_weight, up_weight)
for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()):
new_buffer_value = calculate_ema(self.beta, ma_buffer, current_buffer)
ma_buffer.copy_(new_buffer_value)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)

View File

@@ -13,6 +13,8 @@ import torchvision
from einops import rearrange, reduce, repeat
from dalle2_pytorch.attention import QueryAttnUpsample
# constants
MList = nn.ModuleList
@@ -243,6 +245,7 @@ class ResBlock(nn.Module):
def forward(self, x):
return self.net(x) + x
# vqgan attention layer
class VQGanAttention(nn.Module):
def __init__(
self,
@@ -375,7 +378,7 @@ class VQGanVAE(nn.Module):
for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn):
append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.Upsample(scale_factor = 2, mode = 'bilinear', align_corners = False), nn.Conv2d(dim_out, dim_in, 3, padding = 1), leaky_relu()))
prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu()))
if layer_use_attn:
prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.41',
version = '0.0.46',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',