Compare commits

..

3 Commits

3 changed files with 35 additions and 26 deletions

View File

@@ -137,23 +137,27 @@ def sigmoid_beta_schedule(timesteps):
# diffusion prior
class RMSNorm(nn.Module):
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
squared_sum = (x ** 2).sum(dim = -1, keepdim = True)
inv_norm = torch.rsqrt(squared_sum + self.eps)
return x * inv_norm * self.gamma * self.scale
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g
class ChanRMSNorm(RMSNorm):
def forward(self, x):
squared_sum = (x ** 2).sum(dim = 1, keepdim = True)
inv_norm = torch.rsqrt(squared_sum + self.eps)
return x * inv_norm * rearrange(self.gamma, 'c -> 1 c 1 1') * self.scale
class Residual(nn.Module):
def __init__(self, fn):
@@ -249,10 +253,10 @@ def FeedForward(dim, mult = 4, dropout = 0., post_activation_norm = False):
inner_dim = int(mult * dim)
return nn.Sequential(
RMSNorm(dim),
LayerNorm(dim),
nn.Linear(dim, inner_dim * 2, bias = False),
SwiGLU(),
RMSNorm(inner_dim) if post_activation_norm else nn.Identity(),
LayerNorm(inner_dim) if post_activation_norm else nn.Identity(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim, bias = False)
)
@@ -275,7 +279,8 @@ class Attention(nn.Module):
inner_dim = dim_head * heads
self.causal = causal
self.norm = RMSNorm(dim)
self.norm = LayerNorm(dim)
self.post_norm = LayerNorm(dim) # sandwich norm from Coqview paper + Normformer
self.dropout = nn.Dropout(dropout)
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
@@ -331,7 +336,8 @@ class Attention(nn.Module):
out = einsum('b h i j, b j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
out = self.to_out(out)
return self.post_norm(out)
class CausalTransformer(nn.Module):
def __init__(
@@ -344,7 +350,8 @@ class CausalTransformer(nn.Module):
ff_mult = 4,
norm_out = False,
attn_dropout = 0.,
ff_dropout = 0.
ff_dropout = 0.,
final_proj = True
):
super().__init__()
self.rel_pos_bias = RelPosBias(heads = heads)
@@ -356,7 +363,8 @@ class CausalTransformer(nn.Module):
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
]))
self.norm = RMSNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
self.norm = LayerNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
self.project_out = nn.Linear(dim, dim, bias = False) if final_proj else nn.Identity()
def forward(
self,
@@ -371,7 +379,8 @@ class CausalTransformer(nn.Module):
x = attn(x, mask = mask, attn_bias = attn_bias) + x
x = ff(x) + x
return self.norm(x)
out = self.norm(x)
return self.project_out(out)
class DiffusionPriorNetwork(nn.Module):
def __init__(
@@ -720,7 +729,7 @@ class ConvNextBlock(nn.Module):
inner_dim = int(dim_out * mult)
self.net = nn.Sequential(
ChanRMSNorm(dim) if norm else nn.Identity(),
ChanLayerNorm(dim) if norm else nn.Identity(),
nn.Conv2d(dim, inner_dim, 3, padding = 1),
nn.GELU(),
nn.Conv2d(inner_dim, dim_out, 3, padding = 1)
@@ -756,8 +765,8 @@ class CrossAttention(nn.Module):
context_dim = default(context_dim, dim)
self.norm = RMSNorm(dim)
self.norm_context = RMSNorm(context_dim)
self.norm = LayerNorm(dim)
self.norm_context = LayerNorm(context_dim)
self.dropout = nn.Dropout(dropout)
self.null_kv = nn.Parameter(torch.randn(2, dim_head))

View File

@@ -435,12 +435,12 @@ class VQGanVAE(nn.Module):
return fmap
def decode(self, fmap):
fmap = self.vq(fmap)
fmap, indices, commit_loss = self.vq(fmap)
for dec in self.decoders:
fmap = dec(fmap)
return fmap
return fmap, indices, commit_loss
def forward(
self,
@@ -453,9 +453,9 @@ class VQGanVAE(nn.Module):
assert height == self.image_size and width == self.image_size, 'height and width of input image must be equal to {self.image_size}'
assert channels == self.channels, 'number of channels on image or sketch is not equal to the channels set on this VQGanVAE'
fmap, indices, commit_loss = self.encode(img)
fmap = self.encode(img)
fmap = self.decode(fmap)
fmap, indices, commit_loss = self.decode(fmap)
if not return_loss and not return_discr_loss:
return fmap

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.33',
version = '0.0.36',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',