Compare commits

..

1 Commits

Author SHA1 Message Date
Phil Wang
a95de92964 fix bug with @jihoonerd 2022-04-15 06:40:46 -07:00
3 changed files with 32 additions and 104 deletions

View File

@@ -2,9 +2,7 @@
## DALL-E 2 - Pytorch (wip)
Implementation of <a href="https://openai.com/dall-e-2/">DALL-E 2</a>, OpenAI's updated text-to-image synthesis neural network, in Pytorch.
<a href="https://youtu.be/RJwPN4qNi_Y?t=555">Yannic Kilcher summary</a> | <a href="https://www.youtube.com/watch?v=F1X4fHzF4mQ">AssemblyAI explainer</a>
Implementation of <a href="https://openai.com/dall-e-2/">DALL-E 2</a>, OpenAI's updated text-to-image synthesis neural network, in Pytorch. <a href="https://youtu.be/RJwPN4qNi_Y?t=555">Yannic Kilcher summary</a>
The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network 😂)
@@ -14,7 +12,9 @@ It may also explore an extension of using <a href="https://huggingface.co/spaces
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>
Do let me know if anyone is interested in a Jax version https://github.com/lucidrains/DALLE2-pytorch/discussions/8
For all of you emailing me (there is a lot), the best way to contribute is through pull requests. Everything is open sourced after all. All my thoughts are public. This is your moment to participate.
## Install
@@ -320,12 +320,12 @@ Offer training wrappers
- [x] add what was proposed in the paper, where DDPM objective for image latent embedding predicts x0 directly (reread vq-diffusion paper and get caught up on that line of work)
- [x] make sure it works end to end to produce an output tensor, taking a single gradient step
- [x] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [ ] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
- [ ] look into Jonathan Ho's cascading DDPM for the decoder, as that seems to be what they are using. get caught up on DDPM literature
- [ ] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [ ] train on a toy task, offer in colab
- [ ] add attention to unet - apply some personal tricks with efficient attention - use the sparse attention mechanism from https://github.com/lucidrains/vit-pytorch#maxvit
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
- [ ] consider U2-net for decoder https://arxiv.org/abs/2005.09007 (also in separate file as experimental) build out https://github.com/lucidrains/x-unet
- [ ] add attention to unet - apply some personal tricks with efficient attention
- [ ] figure out the big idea behind latent diffusion and what can be ported over
- [ ] consider U2-net for decoder https://arxiv.org/abs/2005.09007
## Citations

View File

@@ -11,7 +11,7 @@ from einops.layers.torch import Rearrange
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
from kornia.filters.gaussian import GaussianBlur2d
from kornia.filters import filter2d
from dalle2_pytorch.tokenizer import tokenizer
@@ -98,29 +98,6 @@ def cosine_beta_schedule(timesteps, s = 0.008):
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
def linear_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def quadratic_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start**2, beta_end**2, timesteps) ** 2
def sigmoid_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
betas = torch.linspace(-6, 6, timesteps)
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
# diffusion prior
class RMSNorm(nn.Module):
@@ -450,11 +427,10 @@ class DiffusionPrior(nn.Module):
net,
*,
clip,
timesteps=1000,
cond_drop_prob=0.2,
loss_type="l1",
predict_x0=True,
beta_schedule="cosine",
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = 'l1',
predict_x0 = True
):
super().__init__()
assert isinstance(clip, CLIP)
@@ -470,18 +446,7 @@ class DiffusionPrior(nn.Module):
self.predict_x0 = predict_x0
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
if beta_schedule == "cosine":
betas = cosine_beta_schedule(timesteps)
elif beta_schedule == "linear":
betas = linear_beta_schedule(timesteps)
elif beta_schedule == "quadratic":
betas = quadratic_beta_schedule(timesteps)
elif beta_schedule == "jsd":
betas = 1.0 / torch.linspace(timesteps, 1, timesteps)
elif beta_schedule == "sigmoid":
betas = sigmoid_beta_schedule(timesteps)
else:
raise NotImplementedError()
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
@@ -636,8 +601,6 @@ class DiffusionPrior(nn.Module):
loss = F.l1_loss(to_predict, x_recon)
elif self.loss_type == 'l2':
loss = F.mse_loss(to_predict, x_recon)
elif self.loss_type == "huber":
loss = F.smooth_l1_loss(to_predict, x_recon)
else:
raise NotImplementedError()
@@ -662,6 +625,17 @@ def Upsample(dim):
def Downsample(dim):
return nn.Conv2d(dim, dim, 4, 2, 1)
class Blur(nn.Module):
def __init__(self):
super().__init__()
filt = torch.Tensor([1, 2, 1])
self.register_buffer('filt', filt)
def forward(self, x):
filt = self.filt
filt = rearrange(filt, '... j -> ... 1 j') * rearrange(flit, '... i -> ... i 1')
return filter2d(x, filt, normalized = True)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -795,25 +769,11 @@ class Unet(nn.Module):
out_dim = None,
dim_mults=(1, 2, 4, 8),
channels = 3,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_cond_upsample_mode = 'bilinear',
blur_sigma = 0.1
):
super().__init__()
# for eventual cascading diffusion
self.lowres_cond = lowres_cond
self.lowres_cond_upsample_mode = lowres_cond_upsample_mode
self.lowres_cond_blur = GaussianBlur2d((3, 3), (blur_sigma, blur_sigma))
# determine dimensions
self.channels = channels
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
dims = [init_channels, *map(lambda m: dim * m, dim_mults)]
dims = [channels, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
# time, image embeddings, and optional text encoding
@@ -896,30 +856,12 @@ class Unet(nn.Module):
time,
*,
image_embed,
lowres_cond_img = None,
text_encodings = None,
cond_drop_prob = 0.
):
batch_size, device = x.shape[0], x.device
# add low resolution conditioning, if present
assert not self.lowres_cond and not exists(lowres_cond_img), 'low resolution conditioning image must be present'
if exists(lowres_cond_img):
if self.training:
# when training, blur the low resolution conditional image
lowres_cond_img = self.lowres_cond_blur(lowres_cond_img)
lowres_cond_img = F.interpolate(lowres_cond_img, size = x.shape[-2:], mode = self.lowres_cond_upsample_mode)
x = torch.cat((x, lowres_cond_img), dim = 1)
# time conditioning
time_tokens = self.time_mlp(time)
# conditional dropout
cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device)
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1 1')
@@ -981,10 +923,9 @@ class Decoder(nn.Module):
net,
*,
clip,
timesteps=1000,
cond_drop_prob=0.2,
loss_type="l1",
beta_schedule="cosine",
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = 'l1'
):
super().__init__()
assert isinstance(clip, CLIP)
@@ -996,18 +937,7 @@ class Decoder(nn.Module):
self.image_size = clip.image_size
self.cond_drop_prob = cond_drop_prob
if beta_schedule == "cosine":
betas = cosine_beta_schedule(timesteps)
elif beta_schedule == "linear":
betas = linear_beta_schedule(timesteps)
elif beta_schedule == "quadratic":
betas = quadratic_beta_schedule(timesteps)
elif beta_schedule == "jsd":
betas = 1.0 / torch.linspace(timesteps, 1, timesteps)
elif beta_schedule == "sigmoid":
betas = sigmoid_beta_schedule(timesteps)
else:
raise NotImplementedError()
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
@@ -1136,8 +1066,6 @@ class Decoder(nn.Module):
loss = F.l1_loss(noise, x_recon)
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
elif self.loss_type == "huber":
loss = F.smooth_l1_loss(noise, x_recon)
else:
raise NotImplementedError()

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.18',
version = '0.0.16',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',