mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a95de92964 | ||
|
|
5b4ee09625 |
@@ -325,6 +325,7 @@ Offer training wrappers
|
||||
- [ ] train on a toy task, offer in colab
|
||||
- [ ] add attention to unet - apply some personal tricks with efficient attention
|
||||
- [ ] figure out the big idea behind latent diffusion and what can be ported over
|
||||
- [ ] consider U2-net for decoder https://arxiv.org/abs/2005.09007
|
||||
|
||||
## Citations
|
||||
|
||||
|
||||
@@ -450,7 +450,7 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (0, 1), value = 1.)
|
||||
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
@@ -941,7 +941,7 @@ class Decoder(nn.Module):
|
||||
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (0, 1), value = 1.)
|
||||
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
|
||||
Reference in New Issue
Block a user