mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 03:54:35 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
878b555ef7 | ||
|
|
63029f7388 |
@@ -784,7 +784,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
self.predict_x_start = predict_x_start
|
||||
|
||||
# @crowsonkb 's suggestion - https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
|
||||
self.image_embed_scale = default(image_embed_scale, image_embed_dim ** 0.5)
|
||||
self.image_embed_scale = default(image_embed_scale, self.image_embed_dim ** 0.5)
|
||||
|
||||
# whether to force an l2norm, similar to clipping denoised, when sampling
|
||||
self.sampling_clamp_l2norm = sampling_clamp_l2norm
|
||||
|
||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.0.106',
|
||||
version = '0.0.107',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -85,7 +85,6 @@ def train(image_embed_dim,
|
||||
clip,
|
||||
dp_condition_on_text_encodings,
|
||||
dp_timesteps,
|
||||
dp_l2norm_output,
|
||||
dp_normformer,
|
||||
dp_cond_drop_prob,
|
||||
dpn_depth,
|
||||
@@ -105,8 +104,7 @@ def train(image_embed_dim,
|
||||
depth = dpn_depth,
|
||||
dim_head = dpn_dim_head,
|
||||
heads = dpn_heads,
|
||||
normformer = dp_normformer,
|
||||
l2norm_output = dp_l2norm_output).to(device)
|
||||
normformer = dp_normformer).to(device)
|
||||
|
||||
# DiffusionPrior with text embeddings and image embeddings pre-computed
|
||||
diffusion_prior = DiffusionPrior(
|
||||
@@ -273,7 +271,6 @@ def main():
|
||||
args.clip,
|
||||
args.dp_condition_on_text_encodings,
|
||||
args.dp_timesteps,
|
||||
args.dp_l2norm_output,
|
||||
args.dp_normformer,
|
||||
args.dp_cond_drop_prob,
|
||||
args.dpn_depth,
|
||||
|
||||
Reference in New Issue
Block a user