Compare commits

...

30 Commits

Author SHA1 Message Date
Phil Wang
9b322ea634 patch 2022-05-09 19:46:19 -07:00
Phil Wang
ba64ea45cc 0.2.3 2022-05-09 16:50:31 -07:00
Phil Wang
64f7be1926 some cleanup 2022-05-09 16:50:21 -07:00
Phil Wang
db805e73e1 fix a bug with numerical stability in attention, sorry! 🐛 2022-05-09 16:23:37 -07:00
z
cb07b37970 Ensure Eval Mode In Metric Functions (#79)
* add eval/train toggles

* train/eval flags

* shift train toggle

Co-authored-by: nousr <z@localhost.com>
2022-05-09 16:05:40 -07:00
Phil Wang
a774bfefe2 add attention and feedforward dropouts to train_diffusion_prior script 2022-05-09 13:57:15 -07:00
Phil Wang
2ae57f0cf5 cleanup 2022-05-09 13:51:26 -07:00
Phil Wang
e46eaec817 deal the diffusion prior problem yet another blow 2022-05-09 11:08:52 -07:00
Kumar R
8647cb5e76 Val loss changes, with quite a few other changes. This is in place of the earlier PR(https://github.com/lucidrains/DALLE2-pytorch/pull/67) (#77)
* Val_loss changes - no rebased with lucidrains' master.

* Val Loss changes - now rebased with lucidrains' master

* train_diffusion_prior.py updates

* dalle2_pytorch.py updates

* __init__.py changes

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update dalle2_pytorch.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update train_diffusion_prior.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2022-05-09 08:53:29 -07:00
Phil Wang
53c189e46a give more surface area for attention in diffusion prior 2022-05-09 08:08:11 -07:00
Phil Wang
dde51fd362 revert restriction for classifier free guidance for diffusion prior, given @crowsonkb advice 2022-05-07 20:55:41 -07:00
Nasir Khalid
2eac7996fa Additional image_embed metric (#75)
Added metric to track image_embed vs predicted_image_embed
2022-05-07 14:32:33 -07:00
Phil Wang
4010aec033 turn off classifier free guidance if predicting x_start for diffusion prior 2022-05-07 09:38:17 -07:00
Phil Wang
c87b84a259 todo 2022-05-07 09:21:08 -07:00
Phil Wang
8b05468653 todo 2022-05-07 08:33:45 -07:00
Phil Wang
830afd3c15 sinusoidal embed time embeddings for diffusion prior as well, for continuous version 2022-05-07 08:32:43 -07:00
Phil Wang
8f93729d19 when in doubt, make it a hyperparameter 2022-05-07 07:52:17 -07:00
z
cd5f2c1de4 simulate unrelated captions as a training metric (#66)
* add unrelated embedding metric

* change to torch.roll

Co-authored-by: nousr <z@localhost.com>
Co-authored-by: nousr <>
2022-05-07 05:34:59 -07:00
Phil Wang
85ed77d512 fix a potentially huge bug thanks to @CiaoHe https://github.com/lucidrains/DALLE2-pytorch/issues/71 2022-05-07 05:05:54 -07:00
Piero Rolando
fd53fa17db Fix a typo in README (#70)
Change "pyhon" for "python" (correct)
2022-05-06 16:53:36 -07:00
Phil Wang
3676ef4d49 make sure vqgan-vae trainer supports mixed precision 2022-05-06 10:44:16 -07:00
Phil Wang
28e944f328 make sure openai clip adapter outputs l2normed embeddings 2022-05-06 10:12:03 -07:00
Phil Wang
14e63a3f67 also offer l2norm clamping in diffusion prior during training, if one were using predict x0 objective 2022-05-06 10:05:14 -07:00
Phil Wang
09e9eaa5a6 project management 2022-05-06 09:00:22 -07:00
Phil Wang
e6d752cf4a reprioritize 2022-05-06 08:55:26 -07:00
Phil Wang
ad20a14a4d bring in rotary embeddings for diffusion prior causal transformer (the most powerful relative positional encoding, used in PaLM) - 0.1.0 because of breaking change 2022-05-06 08:45:30 -07:00
Phil Wang
0be1e0d64c support CoCa, which seems to be better than CLIP (has an autoregressive text encoder) https://arxiv.org/abs/2205.01917 2022-05-06 08:27:12 -07:00
Phil Wang
98df1ba51e add diffusion prior trainer, which automatically takes care of the exponential moving average (training and sampling), as well as mixed precision, gradient clipping 2022-05-06 08:11:09 -07:00
Phil Wang
878b555ef7 fix training with clip 2022-05-06 07:37:57 -07:00
Phil Wang
63029f7388 remove l2norm output from train_diffusion_prior.py 2022-05-05 19:07:58 -07:00
7 changed files with 519 additions and 106 deletions

113
README.md
View File

@@ -786,6 +786,68 @@ mock_image_embed = torch.randn(4, 512).cuda()
images = decoder_trainer.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
```
### Diffusion Prior Training
Similarly, one can use the `DiffusionPriorTrainer` to automatically instantiate and keep track of an exponential moving averaged prior.
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, DiffusionPriorTrainer, Unet, Decoder, CLIP
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
diffusion_prior_trainer = DiffusionPriorTrainer(
diffusion_prior,
lr = 3e-4,
wd = 1e-2,
ema_beta = 0.99,
ema_update_after_step = 1000,
ema_update_every = 10,
)
loss = diffusion_prior_trainer(text, images)
loss.backward()
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
# after much of the above three lines in a loop
# you can sample from the exponential moving average of the diffusion prior identically to how you do so for DiffusionPrior
image_embeds = diffusion_prior_trainer.sample(text) # (4, 512) - exponential moving averaged image embeddings
```
### Decoder Dataloaders
In order to make loading data simple and efficient, we include some general dataloaders that can be used to train portions of the network.
@@ -840,7 +902,7 @@ Please note that the script internally passes text_embed and image_embed to the
### Usage
```bash
$ pyhon train_diffusion_prior.py
$ python train_diffusion_prior.py
```
The most significant parameters for the script are as follows:
@@ -865,7 +927,39 @@ The most significant parameters for the script are as follows:
### Sample wandb run log
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/aul0rhv5?workspace=
Please find a sample wandb run log at : https://wandb.ai/laion/diffusion-prior/runs/1blxu24j
### Loading and saving the Diffusion Prior model
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
## from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model
load_diffusion_model(dprior_path, device)
dprior_path : path to saved model(.pth)
device : the cuda device you're running on
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
save_path : path to save at
model : object of Diffusion_Prior
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
scaler : a GradScaler object.
e.g: scaler = GradScaler(enabled=amp)
config : config object created in train_diffusion_prior.py - see file for example.
image_embed_dim - the dimension of the image_embedding
e.g: 768
## CLI (wip)
@@ -904,8 +998,9 @@ Once built, images will be saved to the same directory the command is invoked
- [x] add convnext backbone for vqgan-vae (in addition to vit [vit-vqgan] + resnet)
- [x] make sure DDPMs can be run with traditional resnet blocks (but leave convnext as an option for experimentation)
- [x] make sure for the latter unets in the cascade, one can train on crops for learning super resolution (constrain the unet to be only convolutions in that case, or allow conv-like attention with rel pos bias)
- [x] offer setting in diffusion prior to split time and image embeddings into multiple tokens, configurable, for more surface area during attention
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] make sure the cascading ddpm in the repository can be trained unconditionally, offer a one-line CLI tool for training on a folder of images
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] pull logic for training diffusion prior into a class DiffusionPriorTrainer, for eventual script based + CLI based training
- [ ] train on a toy task, offer in colab
@@ -918,6 +1013,8 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] make sure resnet hyperparameters can be configurable across unet depth (groups and expansion factor)
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
## Citations
@@ -985,4 +1082,14 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@article{Yu2022CoCaCC,
title = {CoCa: Contrastive Captioners are Image-Text Foundation Models},
author = {Jiahui Yu and Zirui Wang and Vijay Vasudevan and Legg Yeung and Mojtaba Seyedhosseini and Yonghui Wu},
journal = {ArXiv},
year = {2022},
volume = {abs/2205.01917}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -1,6 +1,6 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.train import DecoderTrainer
from dalle2_pytorch.train import DecoderTrainer, DiffusionPriorTrainer
from dalle2_pytorch.vqgan_vae import VQGanVAE
from x_clip import CLIP

View File

@@ -4,6 +4,7 @@ from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
from pathlib import Path
import torch
import torch.nn.functional as F
@@ -23,9 +24,14 @@ from dalle2_pytorch.vqgan_vae import NullVQGanVAE, VQGanVAE
from resize_right import resize
# rotary embeddings
from rotary_embedding_torch import RotaryEmbedding
# use x-clip
from x_clip import CLIP
from coca_pytorch import CoCa
# helper functions
@@ -113,9 +119,10 @@ EmbeddedText = namedtuple('EmbedTextReturn', ['text_embed', 'text_encodings', 't
EmbeddedImage = namedtuple('EmbedImageReturn', ['image_embed', 'image_encodings'])
class BaseClipAdapter(nn.Module):
def __init__(self, clip):
def __init__(self, clip, **kwargs):
super().__init__()
self.clip = clip
self.overrides = kwargs
@property
def dim_latent(self):
@@ -173,6 +180,39 @@ class XClipAdapter(BaseClipAdapter):
image_embed = self.clip.to_visual_latent(image_cls)
return EmbeddedImage(l2norm(image_embed), image_encodings)
class CoCaAdapter(BaseClipAdapter):
@property
def dim_latent(self):
return self.clip.dim
@property
def image_size(self):
assert 'image_size' in self.overrides
return self.overrides['image_size']
@property
def image_channels(self):
assert 'image_channels' in self.overrides
return self.overrides['image_channels']
@property
def max_text_len(self):
assert 'max_text_len' in self.overrides
return self.overrides['max_text_len']
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
text_embed, text_encodings = self.clip.embed_text(text)
return EmbeddedText(text_embed, text_encodings, text_mask)
@torch.no_grad()
def embed_image(self, image):
image = resize_image_to(image, self.image_size)
image_embed, image_encodings = self.clip.embed_image(image)
return EmbeddedImage(image_embed, image_encodings)
class OpenAIClipAdapter(BaseClipAdapter):
def __init__(
self,
@@ -225,7 +265,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
del self.text_encodings
return EmbeddedText(text_embed.float(), text_encodings.float(), text_mask)
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float(), text_mask)
@torch.no_grad()
def embed_image(self, image):
@@ -233,7 +273,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
image = resize_image_to(image, self.image_size)
image = self.clip_normalize(unnormalize_img(image))
image_embed = self.clip.encode_image(image)
return EmbeddedImage(image_embed.float(), None)
return EmbeddedImage(l2norm(image_embed.float()), None)
# classifier free guidance functions
@@ -531,7 +571,8 @@ class Attention(nn.Module):
heads = 8,
dropout = 0.,
causal = False,
post_norm = False
post_norm = False,
rotary_emb = None
):
super().__init__()
self.scale = dim_head ** -0.5
@@ -547,6 +588,8 @@ class Attention(nn.Module):
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
self.rotary_emb = rotary_emb
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim, bias = False),
LayerNorm(dim) if post_norm else nn.Identity()
@@ -559,6 +602,12 @@ class Attention(nn.Module):
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads)
q = q * self.scale
# rotary embeddings
if exists(self.rotary_emb):
q, k = map(self.rotary_emb.rotate_queries_or_keys, (q, k))
# add null key / value for classifier free guidance in prior net
@@ -566,7 +615,7 @@ class Attention(nn.Module):
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
q = q * self.scale
# calculate query / key similarities
sim = einsum('b h i d, b j d -> b h i j', q, k)
@@ -591,7 +640,7 @@ class Attention(nn.Module):
# attention
sim = sim - sim.amax(dim = -1, keepdim = True)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
@@ -616,15 +665,18 @@ class CausalTransformer(nn.Module):
attn_dropout = 0.,
ff_dropout = 0.,
final_proj = True,
normformer = False
normformer = False,
rotary_emb = True
):
super().__init__()
self.rel_pos_bias = RelPosBias(heads = heads)
rotary_emb = RotaryEmbedding(dim = min(32, dim_head)) if rotary_emb else None
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, post_norm = normformer),
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, post_norm = normformer, rotary_emb = rotary_emb),
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
]))
@@ -652,10 +704,31 @@ class DiffusionPriorNetwork(nn.Module):
self,
dim,
num_timesteps = None,
num_time_embeds = 1,
num_image_embeds = 1,
num_text_embeds = 1,
**kwargs
):
super().__init__()
self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(Rearrange('b -> b 1'), MLP(1, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.num_time_embeds = num_time_embeds
self.num_image_embeds = num_image_embeds
self.num_text_embeds = num_text_embeds
self.to_text_embeds = nn.Sequential(
nn.Linear(dim, dim * num_text_embeds) if num_text_embeds > 1 else nn.Identity(),
Rearrange('b (n d) -> b n d', n = num_text_embeds)
)
self.to_time_embeds = nn.Sequential(
nn.Embedding(num_timesteps, dim * num_time_embeds) if exists(num_timesteps) else nn.Sequential(SinusoidalPosEmb(dim), MLP(dim, dim * num_time_embeds)), # also offer a continuous version of timestep embeddings, with a 2 layer MLP
Rearrange('b (n d) -> b n d', n = num_time_embeds)
)
self.to_image_embeds = nn.Sequential(
nn.Linear(dim, dim * num_image_embeds) if num_image_embeds > 1 else nn.Identity(),
Rearrange('b (n d) -> b n d', n = num_image_embeds)
)
self.learned_query = nn.Parameter(torch.randn(dim))
self.causal_transformer = CausalTransformer(dim = dim, **kwargs)
@@ -685,10 +758,13 @@ class DiffusionPriorNetwork(nn.Module):
):
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds
# in section 2.2, last paragraph
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d')
text_embed = self.to_text_embeds(text_embed)
image_embed = self.to_image_embeds(image_embed)
# make text encodings optional
# although the paper seems to suggest it is present <--
@@ -708,16 +784,17 @@ class DiffusionPriorNetwork(nn.Module):
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
keep_mask = repeat(keep_mask, 'b 1 -> b n', n = num_text_embeds)
mask = torch.cat((mask, keep_mask), dim = 1)
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right
if exists(mask):
mask = F.pad(mask, (0, 2), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
attend_padding = 1 + num_time_embeds + num_image_embeds # 1 for learned queries + number of image embeds + time embeds
mask = F.pad(mask, (0, attend_padding), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.time_embeddings(diffusion_timesteps)
time_embed = rearrange(time_embed, 'b d -> b 1 d')
time_embed = self.to_time_embeds(diffusion_timesteps)
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
@@ -725,6 +802,7 @@ class DiffusionPriorNetwork(nn.Module):
text_encodings,
text_embed,
time_embed,
image_embed,
learned_queries
), dim = -2)
@@ -748,13 +826,16 @@ class DiffusionPrior(BaseGaussianDiffusion):
image_size = None,
image_channels = 3,
timesteps = 1000,
cond_drop_prob = 0.2,
cond_drop_prob = 0.,
loss_type = "l1",
predict_x_start = True,
beta_schedule = "cosine",
condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training
sampling_clamp_l2norm = False,
training_clamp_l2norm = False,
init_image_embed_l2norm = False,
image_embed_scale = None, # this is for scaling the l2-normed image embedding, so it is more suitable for gaussian diffusion, as outlined by Katherine (@crowsonkb) https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
clip_adapter_overrides = dict()
):
super().__init__(
beta_schedule = beta_schedule,
@@ -764,7 +845,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
if exists(clip):
if isinstance(clip, CLIP):
clip = XClipAdapter(clip)
clip = XClipAdapter(clip, **clip_adapter_overrides)
elif isinstance(clip, CoCa):
clip = CoCaAdapter(clip, **clip_adapter_overrides)
assert isinstance(clip, BaseClipAdapter)
freeze_model_and_make_eval_(clip)
@@ -784,10 +867,12 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.predict_x_start = predict_x_start
# @crowsonkb 's suggestion - https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
self.image_embed_scale = default(image_embed_scale, image_embed_dim ** 0.5)
self.image_embed_scale = default(image_embed_scale, self.image_embed_dim ** 0.5)
# whether to force an l2norm, similar to clipping denoised, when sampling
self.sampling_clamp_l2norm = sampling_clamp_l2norm
self.training_clamp_l2norm = training_clamp_l2norm
self.init_image_embed_l2norm = init_image_embed_l2norm
def p_mean_variance(self, x, t, text_cond, clip_denoised: bool):
pred = self.net(x, t, **text_cond)
@@ -822,11 +907,16 @@ class DiffusionPrior(BaseGaussianDiffusion):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
image_embed = torch.randn(shape, device=device)
if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), text_cond = text_cond)
return img
times = torch.full((b,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond)
return image_embed
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
@@ -840,11 +930,26 @@ class DiffusionPrior(BaseGaussianDiffusion):
**text_cond
)
if self.predict_x_start and self.training_clamp_l2norm:
pred = l2norm(pred) * self.image_embed_scale
target = noise if not self.predict_x_start else image_embed
loss = self.loss_fn(pred, target)
return loss
@torch.inference_mode()
@eval_decorator
def sample_batch_size(self, batch_size, text_cond):
device = self.betas.device
shape = (batch_size, self.image_embed_dim)
img = torch.randn(shape, device = device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond)
return img
@torch.inference_mode()
@eval_decorator
def sample(self, text, num_samples_per_batch = 2):
@@ -1062,7 +1167,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
@@ -1475,7 +1580,8 @@ class Decoder(BaseGaussianDiffusion):
blur_kernel_size = 3, # cascading ddpm - blur kernel size
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
clip_denoised = True,
clip_x_start = True
clip_x_start = True,
clip_adapter_overrides = dict()
):
super().__init__(
beta_schedule = beta_schedule,
@@ -1488,7 +1594,9 @@ class Decoder(BaseGaussianDiffusion):
self.clip = None
if exists(clip):
if isinstance(clip, CLIP):
clip = XClipAdapter(clip)
clip = XClipAdapter(clip, **clip_adapter_overrides)
elif isinstance(clip, CoCa):
clip = CoCaAdapter(clip, **clip_adapter_overrides)
freeze_model_and_make_eval_(clip)
assert isinstance(clip, BaseClipAdapter)
@@ -1815,3 +1923,4 @@ class DALLE2(nn.Module):
return images[0]
return images

View File

@@ -1,3 +1,4 @@
import time
import copy
from functools import partial
@@ -5,7 +6,7 @@ import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
from dalle2_pytorch.optimizer import get_optimizer
# helper functions
@@ -39,6 +40,50 @@ def groupby_prefix_and_trim(prefix, d):
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
def load_diffusion_model(dprior_path, device):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print_ribbon('Saving checkpoint')
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# exponential moving average wrapper
class EMA(nn.Module):
@@ -89,7 +134,83 @@ class EMA(nn.Module):
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
# trainers
# diffusion prior trainer
class DiffusionPriorTrainer(nn.Module):
def __init__(
self,
diffusion_prior,
use_ema = True,
lr = 3e-4,
wd = 1e-2,
max_grad_norm = None,
amp = False,
**kwargs
):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
self.diffusion_prior = diffusion_prior
# exponential moving average
self.use_ema = use_ema
if self.use_ema:
self.ema_diffusion_prior = EMA(diffusion_prior, **ema_kwargs)
# optimizer and mixed precision stuff
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.optimizer = get_optimizer(
diffusion_prior.parameters(),
lr = lr,
wd = wd,
**kwargs
)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
def update(self):
if exists(self.max_grad_norm):
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.use_ema:
self.ema_diffusion_prior.update()
@torch.inference_mode()
def p_sample_loop(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
@torch.inference_mode()
def sample(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
@torch.inference_mode()
def sample_batch_size(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
def forward(
self,
*args,
divisor = 1,
**kwargs
):
with autocast(enabled = self.amp):
loss = self.diffusion_prior(*args, **kwargs)
return self.scaler.scale(loss / divisor)
# decoder trainer
class DecoderTrainer(nn.Module):
def __init__(

View File

@@ -3,14 +3,15 @@ import copy
from random import choice
from pathlib import Path
from shutil import rmtree
from PIL import Image
import torch
from torch import nn
from PIL import Image
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as T
from torchvision.datasets import ImageFolder
from torchvision.utils import make_grid, save_image
from einops import rearrange
@@ -99,6 +100,7 @@ class VQGanVAETrainer(nn.Module):
ema_update_after_step = 2000,
ema_update_every = 10,
apply_grad_penalty_every = 4,
amp = False
):
super().__init__()
assert isinstance(vae, VQGanVAE), 'vae must be instance of VQGanVAE'
@@ -120,6 +122,10 @@ class VQGanVAETrainer(nn.Module):
self.optim = get_optimizer(vae_parameters, lr = lr, wd = wd)
self.discr_optim = get_optimizer(discr_parameters, lr = lr, wd = wd)
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.discr_scaler = GradScaler(enabled = amp)
# create dataset
self.ds = ImageDataset(folder, image_size = image_size)
@@ -178,20 +184,22 @@ class VQGanVAETrainer(nn.Module):
img = next(self.dl)
img = img.to(device)
loss = self.vae(
img,
return_loss = True,
apply_grad_penalty = apply_grad_penalty
)
with autocast(enabled = self.amp):
loss = self.vae(
img,
return_loss = True,
apply_grad_penalty = apply_grad_penalty
)
self.scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'loss': loss.item() / self.grad_accum_every})
(loss / self.grad_accum_every).backward()
self.optim.step()
self.scaler.step(self.optim)
self.scaler.update()
self.optim.zero_grad()
# update discriminator
if exists(self.vae.discr):
@@ -200,12 +208,15 @@ class VQGanVAETrainer(nn.Module):
img = next(self.dl)
img = img.to(device)
loss = self.vae(img, return_discr_loss = True)
with autocast(enabled = self.amp):
loss = self.vae(img, return_discr_loss = True)
self.discr_scaler.scale(loss / self.grad_accum_every).backward()
accum_log(logs, {'discr_loss': loss.item() / self.grad_accum_every})
(loss / self.grad_accum_every).backward()
self.discr_optim.step()
self.discr_scaler.step(self.discr_optim)
self.discr_scaler.update()
self.discr_optim.zero_grad()
# log

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.106',
version = '0.2.4',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -24,12 +24,14 @@ setup(
install_requires=[
'click',
'clip-anytorch',
'coca-pytorch>=0.0.5',
'einops>=0.4',
'einops-exts>=0.0.3',
'embedding-reader',
'kornia>=0.5.4',
'pillow',
'resize-right>=0.0.2',
'rotary-embedding-torch',
'torch>=1.10',
'torchvision',
'tqdm',

View File

@@ -7,6 +7,7 @@ import torch
from torch import nn
from embedding_reader import EmbeddingReader
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.optimizer import get_optimizer
from torch.cuda.amp import autocast,GradScaler
@@ -41,37 +42,56 @@ def eval_model(model,device,image_reader,text_reader,start,end,batch_size,loss_t
avg_loss = (total_loss / total_samples)
wandb.log({f'{phase} {loss_type}': avg_loss})
def save_model(save_path, state_dict):
# Saving State Dict
print("====================================== Saving checkpoint ======================================")
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,NUM_TEST_EMBEDDINGS,device):
diffusion_prior.eval()
def report_cosine_sims(diffusion_prior,image_reader,text_reader,train_set_size,val_set_size,NUM_TEST_EMBEDDINGS,device):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
tstart = train_set_size+val_set_size
tend = train_set_size+val_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size = NUM_TEST_EMBEDDINGS, start=tstart, end = tend),image_reader(batch_size = NUM_TEST_EMBEDDINGS, start=tstart, end = tend)):
text_embed = torch.tensor(embt[0]).to(device)
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed = text_embed)
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / test_image_embeddings.norm(dim=1, keepdim=True)
predicted_image_embeddings = diffusion_prior.p_sample_loop((NUM_TEST_EMBEDDINGS, 768), text_cond = test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / predicted_image_embeddings.norm(dim=1, keepdim=True)
original_similarity = cos(text_embed,test_image_embeddings).cpu().numpy()
predicted_similarity = cos(text_embed,predicted_image_embeddings).cpu().numpy()
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity)})
wandb.log({"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity)})
return np.mean(predicted_similarity - original_similarity)
tstart = train_set_size
tend = train_set_size+NUM_TEST_EMBEDDINGS
for embt, embi in zip(text_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend),
image_reader(batch_size=NUM_TEST_EMBEDDINGS, start=tstart, end=tend)):
# make a copy of the text embeddings for shuffling
text_embed = torch.tensor(embt[0]).to(device)
text_embed_shuffled = text_embed.clone()
# roll the text embeddings to simulate "unrelated" captions
rolled_idx = torch.roll(torch.arange(NUM_TEST_EMBEDDINGS), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
test_text_shuffled_cond = dict(text_embed=text_embed_shuffled)
# prepare the text embedding
text_embed = text_embed / text_embed.norm(dim=1, keepdim=True)
test_text_cond = dict(text_embed=text_embed)
# prepare image embeddings
test_image_embeddings = torch.tensor(embi[0]).to(device)
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
# predict on the unshuffled text embeddings
predicted_image_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
# predict on the shuffled embeddings
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
(NUM_TEST_EMBEDDINGS, 768), text_cond=test_text_shuffled_cond)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
# calculate similarities
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
wandb.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
def train(image_embed_dim,
image_embed_url,
@@ -85,7 +105,6 @@ def train(image_embed_dim,
clip,
dp_condition_on_text_encodings,
dp_timesteps,
dp_l2norm_output,
dp_normformer,
dp_cond_drop_prob,
dpn_depth,
@@ -94,9 +113,15 @@ def train(image_embed_dim,
save_interval,
save_path,
device,
RESUME,
DPRIOR_PATH,
config,
wandb_entity,
wandb_project,
learning_rate=0.001,
max_grad_norm=0.5,
weight_decay=0.01,
dropout=0.05,
amp=False):
# DiffusionPriorNetwork
@@ -105,8 +130,9 @@ def train(image_embed_dim,
depth = dpn_depth,
dim_head = dpn_dim_head,
heads = dpn_heads,
normformer = dp_normformer,
l2norm_output = dp_l2norm_output).to(device)
attn_dropout = dropout,
ff_dropout = dropout,
normformer = dp_normformer).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(
@@ -118,16 +144,21 @@ def train(image_embed_dim,
loss_type = dp_loss_type,
condition_on_text_encodings = dp_condition_on_text_encodings).to(device)
# Get image and text embeddings from the servers
print("==============Downloading embeddings - image and text====================")
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
num_data_points = text_reader.count
# Load pre-trained model from DPRIOR_PATH
if RESUME:
diffusion_prior=load_diffusion_model(DPRIOR_PATH,device)
wandb.init( entity=wandb_entity, project=wandb_project, config=config)
# Create save_path if it doesn't exist
if not os.path.exists(save_path):
os.makedirs(save_path)
# Get image and text embeddings from the servers
print_ribbon("Downloading embeddings - image and text")
image_reader = EmbeddingReader(embeddings_folder=image_embed_url, file_format="npy")
text_reader = EmbeddingReader(embeddings_folder=text_embed_url, file_format="npy")
num_data_points = text_reader.count
### Training code ###
scaler = GradScaler(enabled=amp)
optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
@@ -138,12 +169,15 @@ def train(image_embed_dim,
train_set_size = int(train_percent*num_data_points)
val_set_size = int(val_percent*num_data_points)
eval_start = train_set_size
for _ in range(epochs):
diffusion_prior.train()
for emb_images,emb_text in zip(image_reader(batch_size=batch_size, start=0, end=train_set_size),
text_reader(batch_size=batch_size, start=0, end=train_set_size)):
diffusion_prior.train()
emb_images_tensor = torch.tensor(emb_images[0]).to(device)
emb_text_tensor = torch.tensor(emb_text[0]).to(device)
@@ -158,9 +192,13 @@ def train(image_embed_dim,
if(int(time.time()-t) >= 60*save_interval):
t = time.time()
save_model(
save_diffusion_model(
save_path,
dict(model=diffusion_prior.state_dict(), optimizer=optimizer.state_dict(), scaler=scaler.state_dict()))
diffusion_prior,
optimizer,
scaler,
config,
image_embed_dim)
# Log to wandb
wandb.log({"Training loss": loss.item(),
@@ -170,14 +208,22 @@ def train(image_embed_dim,
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
diff_cosine_sim = report_cosine_sims(diffusion_prior,
report_cosine_sims(diffusion_prior,
image_reader,
text_reader,
train_set_size,
val_set_size,
NUM_TEST_EMBEDDINGS,
device)
wandb.log({"Cosine similarity difference": diff_cosine_sim})
### Evaluate model(validation run) ###
eval_model(diffusion_prior,
device,
image_reader,
text_reader,
eval_start,
eval_start+NUM_TEST_EMBEDDINGS,
NUM_TEST_EMBEDDINGS,
dp_loss_type,
phase="Validation")
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(diffusion_prior.parameters(), max_grad_norm)
@@ -186,11 +232,6 @@ def train(image_embed_dim,
scaler.update()
optimizer.zero_grad()
### Evaluate model(validation run) ###
start = train_set_size
end=start+val_set_size
eval_model(diffusion_prior,device,image_reader,text_reader,start,end,batch_size,dp_loss_type,phase="Validation")
### Test run ###
test_set_size = int(test_percent*train_set_size)
start=train_set_size+val_set_size
@@ -202,7 +243,6 @@ def main():
# Logging
parser.add_argument("--wandb-entity", type=str, default="laion")
parser.add_argument("--wandb-project", type=str, default="diffusion-prior")
parser.add_argument("--wandb-name", type=str, default="laion-dprior")
parser.add_argument("--wandb-dataset", type=str, default="LAION-5B")
parser.add_argument("--wandb-arch", type=str, default="DiffusionPrior")
# URLs for embeddings
@@ -211,6 +251,7 @@ def main():
# Hyperparameters
parser.add_argument("--learning-rate", type=float, default=1.1e-4)
parser.add_argument("--weight-decay", type=float, default=6.02e-2)
parser.add_argument("--dropout", type=float, default=5e-2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--batch-size", type=int, default=10**4)
parser.add_argument("--num-epochs", type=int, default=5)
@@ -228,7 +269,6 @@ def main():
# DiffusionPrior(dp) parameters
parser.add_argument("--dp-condition-on-text-encodings", type=bool, default=False)
parser.add_argument("--dp-timesteps", type=int, default=100)
parser.add_argument("--dp-l2norm-output", type=bool, default=False)
parser.add_argument("--dp-normformer", type=bool, default=False)
parser.add_argument("--dp-cond-drop-prob", type=float, default=0.1)
parser.add_argument("--dp-loss-type", type=str, default="l2")
@@ -237,22 +277,40 @@ def main():
# Model checkpointing interval(minutes)
parser.add_argument("--save-interval", type=int, default=30)
parser.add_argument("--save-path", type=str, default="./diffusion_prior_checkpoints")
# Saved model path
parser.add_argument("--pretrained-model-path", type=str, default=None)
args = parser.parse_args()
print("Setting up wandb logging... Please wait...")
config = ({"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"weight_decay":args.weight_decay,
"max_gradient_clipping_norm":args.max_grad_norm,
"batch_size":args.batch_size,
"epochs": args.num_epochs,
"diffusion_prior_network":{"depth":args.dpn_depth,
"dim_head":args.dpn_dim_head,
"heads":args.dpn_heads,
"normformer":args.dp_normformer},
"diffusion_prior":{"condition_on_text_encodings": args.dp_condition_on_text_encodings,
"timesteps": args.dp_timesteps,
"cond_drop_prob":args.dp_cond_drop_prob,
"loss_type":args.dp_loss_type,
"clip":args.clip}
})
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config={
"learning_rate": args.learning_rate,
"architecture": args.wandb_arch,
"dataset": args.wandb_dataset,
"epochs": args.num_epochs,
})
RESUME = False
# Check if DPRIOR_PATH exists(saved model path)
DPRIOR_PATH = args.pretrained_model_path
if(DPRIOR_PATH is not None):
RESUME = True
else:
wandb.init(
entity=args.wandb_entity,
project=args.wandb_project,
config=config)
print("wandb logging setup done!")
# Obtain the utilized device.
has_cuda = torch.cuda.is_available()
@@ -273,7 +331,6 @@ def main():
args.clip,
args.dp_condition_on_text_encodings,
args.dp_timesteps,
args.dp_l2norm_output,
args.dp_normformer,
args.dp_cond_drop_prob,
args.dpn_depth,
@@ -282,9 +339,15 @@ def main():
args.save_interval,
args.save_path,
device,
RESUME,
DPRIOR_PATH,
config,
atgs.wandb_entity,
args.wandb_project,
args.learning_rate,
args.max_grad_norm,
args.weight_decay,
args.dropout,
args.amp)
if __name__ == "__main__":