fix everything and make sure it runs end to end, document everything in readme for public

This commit is contained in:
Phil Wang
2022-04-13 18:05:25 -07:00
parent e5e415297c
commit a1a8a78f21
4 changed files with 364 additions and 73 deletions

283
README.md
View File

@@ -22,9 +22,7 @@ For all of you emailing me (there is a lot), the best way to contribute is throu
$ pip install dalle2-pytorch
```
## Usage (work in progress)
<a href="https://github.com/lucidrains/big-sleep">template</a>
## CLI Usage (work in progress)
```bash
$ dream 'sharing a sunset at the summit of mount everest with my dog'
@@ -32,17 +30,288 @@ $ dream 'sharing a sunset at the summit of mount everest with my dog'
Once built, images will be saved to the same directory the command is invoked
## Training (work in progress, will offer both in code and as command-line)
## Training (for deep learning practitioners)
To train DALLE-2 is a 3 step process, with the training of CLIP being the most important
To train CLIP, you can either use `x-clip` package, or join the LAION discord, where a lot of replication efforts are already underway.
This repository will demonstrate integration with `x-clip` for starters
```python
import torch
from dalle2_pytorch import CLIP
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 1,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 1,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8,
use_all_token_embeds = True, # whether to use fine-grained contrastive learning (FILIP)
decoupled_contrastive_learning = True, # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
extra_latent_projection = True, # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
use_visual_ssl = True, # whether to do self supervised learning on iages
visual_ssl_type = 'simclr', # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
use_mlm = False, # use masked language learning (MLM) on text (DeCLIP)
text_ssl_loss_weight = 0.05, # weight for text MLM loss
image_ssl_loss_weight = 0.05 # weight for image self-supervised learning loss
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# train
loss = clip(
text,
images,
return_loss = True # needs to be set to True to return contrastive loss
)
loss.backward()
# do the above with as many texts and images as possible in a loop
```
Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP above
```python
import torch
from dalle2_pytorch import Unet, Decoder, CLIP
# trained clip from step 1
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 1,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 1,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# unet for the decoder
unet = Unet(
dim = 128,
image_embed_dim = 512,
time_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
# decoder, which contains the unet and clip
decoder = Decoder(
net = unet,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
# mock images (get a lot of this)
images = torch.randn(4, 3, 256, 256).cuda()
# feed images into decoder
loss = decoder(images)
loss.backward()
# do the above for many many many many steps
# then it will learn to generate images based on the CLIP image embeddings
```
Finally, the main contribution of the paper. The repository offers the diffusion prior network. It takes the CLIP text embeddings and tries to generate the CLIP image embeddings. Again, you will need the trained CLIP fron the first step
```python
import torch
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior, CLIP
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8,
).cuda()
# setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork(
dim = 512,
num_timesteps = 100,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
# diffusion prior network, which contains the CLIP and network (with transformer) above
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# feed text and images into diffusion prior network
loss = diffusion_prior(text, images)
loss.backward()
# do the above for many many many steps
# now the diffusion prior can generate image embeddings from the text embeddings
```
Finally, to generate the DALL-E2 images from text. Insert the trained `DiffusionPrior` as well as the `Decoder` (which both contains `CLIP`, a unet, and a causal transformer)
```python
from dalle2_pytorch import DALLE2
dalle2 = DALLE2(
prior = diffusion_prior,
decoder = decoder
)
# send the text as a string if you want to use the simple tokenizer from DALL-E1
# or you can do it as token ids, if you have your own tokenizer
texts = ['glistening morning dew on a flower petal']
images = dalle2(texts) # (1, 3, 256, 256)
```
That's it!
Let's see the whole script below
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, CLIP
import torch
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# train
loss = clip(
text,
images,
return_loss = True
)
loss.backward()
# do above for many steps ...
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
num_timesteps = 100,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
loss = diffusion_prior(text, images)
loss.backward()
# do above for many steps ...
# decoder (with unet)
unet = Unet(
dim = 128,
image_embed_dim = 512,
time_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
decoder = Decoder(
net = unet,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
loss = decoder(images)
loss.backward()
# do above for many steps
dalle2 = DALLE2(
prior = diffusion_prior,
decoder = decoder
)
images = dalle2(['cute puppy chasing after a squirrel'])
# save your image
```
Everything in this readme should run without error
## Training CLI (wip)
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
Todo
## Todo
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
- [x] add what was proposed in the paper, where DDPM objective for image latent embedding predicts x0 directly (reread vq-diffusion paper and get caught up on that line of work)
- [ ] make sure it works end to end to produce an output tensor, taking a single gradient step
- [x] make sure it works end to end to produce an output tensor, taking a single gradient step
- [ ] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [ ] look into Jonathan Ho's cascading DDPM for the decoder, as that seems to be what they are using. get caught up on DDPM literature
- [ ] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)

View File

@@ -1 +1,2 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from x_clip import CLIP

View File

@@ -1,10 +1,16 @@
import tqdm
import math
from tqdm import tqdm
from inspect import isfunction
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
from einops_exts import rearrange_many, repeat_many
from einops import rearrange, repeat
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
from dalle2_pytorch.tokenizer import tokenizer
# use x-clip
@@ -16,7 +22,9 @@ def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
if exists(val):
return val
return d() if isfunction(d) else d
def eval_decorator(fn):
def inner(model, *args, **kwargs):
@@ -27,6 +35,11 @@ def eval_decorator(fn):
return out
return inner
def is_list_str(x):
if not isinstance(x, (list, tuple)):
return False
return all([type(el) == str for el in x])
# for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad):
@@ -43,6 +56,11 @@ def freeze_model_and_make_eval_(model):
model.eval()
freeze_all_layers_(model)
# tensor helpers
def l2norm(t):
return F.normalize(t, dim = -1)
# classifier free guidance functions
def prob_mask_like(shape, prob, device):
@@ -91,9 +109,16 @@ class RMSNorm(nn.Module):
inv_norm = torch.rsqrt(squared_sum + self.eps)
return x * inv_norm * self.gamma * self.scale
class ChanRMSNorm(RMSNorm):
def forward(self, x):
squared_sum = (x ** 2).sum(dim = 1, keepdim = True)
inv_norm = torch.rsqrt(squared_sum + self.eps)
return x * inv_norm * rearrange(self.gamma, 'c -> 1 c 1 1') * self.scale
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = RMSNorm(dim)
def forward(self, x, **kwargs):
@@ -112,8 +137,8 @@ def FeedForward(dim, mult = 4, dropout = 0.):
class Attention(nn.Module):
def __init__(
self,
*,
dim,
*,
dim_head = 64,
heads = 8,
dropout = 0.,
@@ -121,6 +146,7 @@ class Attention(nn.Module):
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
inner_dim = dim_head * heads
self.causal = causal
@@ -128,17 +154,17 @@ class Attention(nn.Module):
self.dropout = nn.Dropout(dropout)
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
self.to_qkv = nn.Linear(dim, inner_dim, bias = False)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x, mask = None):
b, n, device = x.shape[:2], x.device
b, n, device = *x.shape[:2], x.device
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
q = rearrange(q, 'b n (h d) -> b h n d')
q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads)
# add null key / value for classifier free guidance in prior net
@@ -148,7 +174,7 @@ class Attention(nn.Module):
q = q * self.scale
sim = einsum('b h i d, b j d -> b h i j')
sim = einsum('b h i d, b j d -> b h i j', q, k)
max_neg_value = -torch.finfo(sim.dtype).max
if exists(mask):
@@ -157,7 +183,8 @@ class Attention(nn.Module):
sim = sim.masked_fill(~mask, max_neg_value)
if self.causal:
causal_mask = torch.ones((n, n), dtype = torch.bool, device = device).triu(1)
i, j = sim.shape[-2:]
causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1)
sim = sim.masked_fill(causal_mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True)
@@ -214,7 +241,7 @@ class DiffusionPriorNetwork(nn.Module):
super().__init__()
self.time_embeddings = nn.Embedding(num_timesteps, dim) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.learned_query = nn.Parameter(torch.randn(dim))
self.causal_transformer = CausalTransformer(**kwargs)
self.causal_transformer = CausalTransformer(dim = dim, **kwargs)
def forward_with_cond_scale(
self,
@@ -227,7 +254,7 @@ class DiffusionPriorNetwork(nn.Module):
return self.forward(x, **kwargs)
logits = self.forward(x, **kwargs)
null_logits = self.forward(x, cond_prob_drop = 1., **kwargs)
null_logits = self.forward(x, cond_drop_prob = 1., **kwargs)
return null_logits + (logits - null_logits) * cond_scale
def forward(
@@ -248,9 +275,10 @@ class DiffusionPriorNetwork(nn.Module):
text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d')
if exists(mask):
mask = F.pad(mask, (0, 4), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
mask = F.pad(mask, (0, 3), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.time_embeddings(diffusion_timesteps)
time_embed = rearrange(time_embed, 'b d -> b 1 d')
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
@@ -268,7 +296,7 @@ class DiffusionPriorNetwork(nn.Module):
# classifier free guidance
cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device)
cond_prob_mask = prob_mask_like((batch,), cond_drop_prob, device = device)
mask &= rearrange(cond_prob_mask, 'b -> b 1')
# attend
@@ -288,19 +316,20 @@ class DiffusionPrior(nn.Module):
*,
clip,
timesteps = 1000,
cond_prob_drop = 0.2,
cond_drop_prob = 0.2,
loss_type = 'l1',
predict_x0 = True
):
super().__init__()
assert isinstance(clip, CLIP)
freeze_model_and_make_eval_(clip)
self.clip = clip
self.net = net
self.image_embed_dim = clip.dim_latent
self.channels = clip.image_channels
self.image_size = clip.image_size
self.cond_prob_drop = cond_prob_drop
self.cond_drop_prob = cond_drop_prob
self.predict_x0 = predict_x0
# in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both.
@@ -389,7 +418,7 @@ class DiffusionPrior(nn.Module):
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, image_embed, text_cond = None, clip_denoised = True, repeat_noise = False):
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
@@ -420,18 +449,18 @@ class DiffusionPrior(nn.Module):
text_cond = self.get_text_cond(text)
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
text_embeds = text_cond['text_embeds']
text_embeds = text_cond['text_embed']
text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
image_embeds = rearrange(image_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
text_image_sims = einsum('b r d, b r d -> b r')
text_image_sims = einsum('b r d, b r d -> b r', l2norm(text_embeds), l2norm(image_embeds))
top_sim_indices = text_image_sims.topk(k = 1).indices
top_sim_indices = repeat(top_sim_indices, 'b 1 -> b d', d = image_embed_dim)
top_sim_indices = repeat(top_sim_indices, 'b 1 -> b 1 d', d = image_embed_dim)
top_image_embeds = image_embeds.gather(1, top_sim_indices)
return top_image_embeds
return rearrange(top_image_embeds, 'b 1 d -> b d')
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
@@ -442,14 +471,14 @@ class DiffusionPrior(nn.Module):
)
def p_losses(self, image_embed, t, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
noise = default(noise, lambda: torch.randn_like(image_embed))
image_embed_noisy = self.q_sample(x_start = image_embed, t = t, noise = noise)
x_recon = self.net(
image_embed_noisy,
t,
cond_prob_drop = self.cond_prob_drop,
cond_drop_prob = self.cond_drop_prob,
**text_cond
)
@@ -472,7 +501,7 @@ class DiffusionPrior(nn.Module):
image_embed = self.get_image_embed(image)
text_cond = self.get_text_cond(text)
loss = self.p_losses(x, times, image_embed = image_embed, text_cond = text_cond, *args, **kwargs)
loss = self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs)
return loss
# decoder
@@ -519,7 +548,7 @@ class ConvNextBlock(nn.Module):
inner_dim = int(dim_out * mult)
self.net = nn.Sequential(
RMSNorm(dim) if norm else nn.Identity(),
ChanRMSNorm(dim) if norm else nn.Identity(),
nn.Conv2d(dim, inner_dim, 3, padding = 1),
nn.GELU(),
nn.Conv2d(inner_dim, dim_out, 3, padding = 1)
@@ -538,21 +567,6 @@ class ConvNextBlock(nn.Module):
h = self.net(h)
return h + self.res_conv(x)
class EinopsToAndFrom(nn.Module):
def __init__(self, from_einops, to_einops, fn):
super().__init__()
self.from_einops = from_einops
self.to_einops = to_einops
self.fn = fn
def forward(self, x, **kwargs):
shape = x.shape
reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape)))
x = rearrange(x, f'{self.from_einops} -> {self.to_einops}')
x = self.fn(x, **kwargs)
x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs)
return x
class Unet(nn.Module):
def __init__(
self,
@@ -597,6 +611,7 @@ class Unet(nn.Module):
]))
mid_dim = dims[-1]
self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', PreNormResidual(mid_dim, Attention(mid_dim)))
self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
@@ -627,7 +642,7 @@ class Unet(nn.Module):
return self.forward(x, **kwargs)
logits = self.forward(x, **kwargs)
null_logits = self.forward(x, cond_prob_drop = 1., **kwargs)
null_logits = self.forward(x, cond_drop_prob = 1., **kwargs)
return null_logits + (logits - null_logits) * cond_scale
def forward(
@@ -637,11 +652,12 @@ class Unet(nn.Module):
*,
image_embed,
text_encodings = None,
cond_prob_drop = 0.
cond_drop_prob = 0.
):
batch_size, device = x.shape[0], x.device
t = self.time_mlp(time)
cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device)
cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device)
# mask out image embedding depending on condition dropout
# for classifier free guidance
@@ -652,7 +668,7 @@ class Unet(nn.Module):
rearrange(self.null_image_embed, 'd -> 1 d')
)
cond = torch.cat((t, image_embed), dim = -1)
t = torch.cat((t, image_embed), dim = -1)
hiddens = []
@@ -663,7 +679,7 @@ class Unet(nn.Module):
x = downsample(x)
x = self.mid_block1(x, t)
x = self.attn(x)
x = self.mid_attn(x)
x = self.mid_block2(x, t)
for convnext, convnext2, upsample in self.ups:
@@ -681,17 +697,18 @@ class Decoder(nn.Module):
*,
clip,
timesteps = 1000,
cond_prob_drop = 0.2,
cond_drop_prob = 0.2,
loss_type = 'l1'
):
super().__init__()
assert isinstance(clip, CLIP)
freeze_model_and_make_eval_(clip)
self.clip = clip
self.net = net
self.channels = clip.image_channels
self.image_size = clip.image_size
self.cond_prob_drop = cond_prob_drop
self.cond_drop_prob = cond_drop_prob
betas = cosine_beta_schedule(timesteps)
@@ -768,7 +785,7 @@ class Decoder(nn.Module):
@torch.no_grad()
def p_sample(self, x, t, image_embed, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, clip_denoised = clip_denoised)
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, image_embed = image_embed, clip_denoised = clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
@@ -800,7 +817,7 @@ class Decoder(nn.Module):
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, image_embed, t, noise = None):
def p_losses(self, x_start, t, *, image_embed, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start = x_start, t = t, noise = noise)
@@ -809,7 +826,7 @@ class Decoder(nn.Module):
x_noisy,
t,
image_embed = image_embed,
cond_prob_drop = self.cond_prob_drop
cond_drop_prob = self.cond_drop_prob
)
if self.loss_type == 'l1':
@@ -821,14 +838,14 @@ class Decoder(nn.Module):
return loss
def forward(self, image, *args, **kwargs):
def forward(self, image):
b, device, img_size, = image.shape[0], image.device, self.image_size
check_shape(image, 'b c h w', h = img_size, w = img_size, c = self.channels)
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
image_embed = self.get_image_embed(image)
loss = self.p_losses(x, times, image_embed = image_embed, *args, **kwargs)
loss = self.p_losses(image, times, image_embed = image_embed)
return loss
# main class
@@ -839,23 +856,27 @@ class DALLE2(nn.Module):
*,
prior,
decoder,
tokenizer = None
prior_num_samples = 2
):
super().__init__()
assert isinstance(prior), DiffusionPrior
assert isinstance(decoder), Decoder
self.tokenizer = tokenizer
assert isinstance(prior, DiffusionPrior)
assert isinstance(decoder, Decoder)
self.prior = prior.eval()
self.decoder = decoder.eval()
self.prior_num_samples = prior_num_samples
@torch.no_grad()
def forward(
self,
*,
text
):
if isinstance(text, str):
assert exists(self.tokenizer), 'tokenizer must be passed in if you were to pass in the text as a string'
text = self.tokenizer.encode(text)
device = next(self.parameters()).device
image_embed = prior.sample(text, num_samples_per_batch = 2)
images = decoder.sample(image_embed)
if isinstance(text, str) or is_list_str(text):
text = [text] if not isinstance(text, (list, tuple)) else text
text = tokenizer.tokenize(text).to(device)
print(text.shape, type(text))
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples)
images = self.decoder.sample(image_embed)
return images

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.3',
version = '0.0.4',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -24,7 +24,7 @@ setup(
install_requires=[
'click',
'einops>=0.4',
'einops-exts',
'einops-exts>=0.0.3',
'pillow',
'torch>=1.10',
'torchvision',