mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-24 03:54:19 +01:00
always work in the l2normed space for image and text embeddings
This commit is contained in:
@@ -374,12 +374,13 @@ class DiffusionPrior(nn.Module):
|
||||
image_encoding = self.clip.visual_transformer(image)
|
||||
image_cls = image_encoding[:, 0]
|
||||
image_embed = self.clip.to_visual_latent(image_cls)
|
||||
return image_embed
|
||||
return l2norm(image_embed)
|
||||
|
||||
def get_text_cond(self, text):
|
||||
text_encodings = self.clip.text_transformer(text)
|
||||
text_cls, text_encodings = text_encodings[:, 0], text_encodings[:, 1:]
|
||||
text_embed = self.clip.to_text_latent(text_cls)
|
||||
text_embed = l2norm(text_embed)
|
||||
return dict(text_encodings = text_encodings, text_embed = text_embed, mask = text != 0)
|
||||
|
||||
def q_mean_variance(self, x_start, t):
|
||||
@@ -750,7 +751,7 @@ class Decoder(nn.Module):
|
||||
image_encoding = self.clip.visual_transformer(image)
|
||||
image_cls = image_encoding[:, 0]
|
||||
image_embed = self.clip.to_visual_latent(image_cls)
|
||||
return image_embed
|
||||
return l2norm(image_embed)
|
||||
|
||||
def q_mean_variance(self, x_start, t):
|
||||
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||
|
||||
Reference in New Issue
Block a user