mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
pin to newer version of CLIP that returns encoded text and images, get some helper functions ready for XCLIP
This commit is contained in:
@@ -3,6 +3,48 @@ import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange
|
||||
|
||||
# use x-clip
|
||||
|
||||
from x_clip import CLIP
|
||||
|
||||
# helper functions
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
# for controlling freezing of CLIP
|
||||
|
||||
def set_module_requires_grad_(module, requires_grad):
|
||||
for param in module.parameters():
|
||||
param.requires_grad = requires_grad
|
||||
|
||||
def freeze_all_layers_(module):
|
||||
set_module_requires_grad_(module, False)
|
||||
|
||||
def unfreeze_all_layers_(module):
|
||||
set_module_requires_grad_(module, True)
|
||||
|
||||
# diffusion prior
|
||||
|
||||
class DiffusionPrior(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
# decoder
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
# main class
|
||||
|
||||
class DALLE2(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
Reference in New Issue
Block a user