Files
DALLE2-pytorch/dalle2_pytorch/dalle2_pytorch.py

54 lines
1010 B
Python

import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
# use x-clip
from x_clip import CLIP
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
def freeze_all_layers_(module):
set_module_requires_grad_(module, False)
def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)
# diffusion prior
class DiffusionPrior(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
# decoder
class Decoder(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
# main class
class DALLE2(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x