mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
numerical accuracy for noise schedule parameters
This commit is contained in:
@@ -303,7 +303,7 @@ def cosine_beta_schedule(timesteps, s = 0.008):
|
|||||||
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
||||||
"""
|
"""
|
||||||
steps = timesteps + 1
|
steps = timesteps + 1
|
||||||
x = torch.linspace(0, timesteps, steps)
|
x = torch.linspace(0, timesteps, steps, dtype = torch.float64)
|
||||||
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||||
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
||||||
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
||||||
@@ -314,21 +314,21 @@ def linear_beta_schedule(timesteps):
|
|||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
return torch.linspace(beta_start, beta_end, timesteps)
|
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
|
||||||
|
|
||||||
|
|
||||||
def quadratic_beta_schedule(timesteps):
|
def quadratic_beta_schedule(timesteps):
|
||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
return torch.linspace(beta_start**2, beta_end**2, timesteps) ** 2
|
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
|
||||||
|
|
||||||
|
|
||||||
def sigmoid_beta_schedule(timesteps):
|
def sigmoid_beta_schedule(timesteps):
|
||||||
scale = 1000 / timesteps
|
scale = 1000 / timesteps
|
||||||
beta_start = scale * 0.0001
|
beta_start = scale * 0.0001
|
||||||
beta_end = scale * 0.02
|
beta_end = scale * 0.02
|
||||||
betas = torch.linspace(-6, 6, timesteps)
|
betas = torch.linspace(-6, 6, timesteps, dtype = torch.float64)
|
||||||
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||||
|
|
||||||
|
|
||||||
@@ -368,17 +368,21 @@ class BaseGaussianDiffusion(nn.Module):
|
|||||||
self.loss_type = loss_type
|
self.loss_type = loss_type
|
||||||
self.loss_fn = loss_fn
|
self.loss_fn = loss_fn
|
||||||
|
|
||||||
self.register_buffer('betas', betas)
|
# register buffer helper function to cast double back to float
|
||||||
self.register_buffer('alphas_cumprod', alphas_cumprod)
|
|
||||||
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
|
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
|
||||||
|
|
||||||
|
register_buffer('betas', betas)
|
||||||
|
register_buffer('alphas_cumprod', alphas_cumprod)
|
||||||
|
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
|
||||||
|
|
||||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||||
|
|
||||||
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
||||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
||||||
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
|
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
|
||||||
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
||||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
||||||
|
|
||||||
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||||||
|
|
||||||
@@ -386,13 +390,13 @@ class BaseGaussianDiffusion(nn.Module):
|
|||||||
|
|
||||||
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
||||||
|
|
||||||
self.register_buffer('posterior_variance', posterior_variance)
|
register_buffer('posterior_variance', posterior_variance)
|
||||||
|
|
||||||
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
||||||
|
|
||||||
self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
|
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
|
||||||
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
||||||
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
||||||
|
|
||||||
def q_mean_variance(self, x_start, t):
|
def q_mean_variance(self, x_start, t):
|
||||||
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||||
|
|||||||
Reference in New Issue
Block a user