diff --git a/dalle2_pytorch/dalle2_pytorch.py b/dalle2_pytorch/dalle2_pytorch.py index e27d304..4640878 100644 --- a/dalle2_pytorch/dalle2_pytorch.py +++ b/dalle2_pytorch/dalle2_pytorch.py @@ -303,7 +303,7 @@ def cosine_beta_schedule(timesteps, s = 0.008): as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 - x = torch.linspace(0, timesteps, steps) + x = torch.linspace(0, timesteps, steps, dtype = torch.float64) alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) @@ -314,21 +314,21 @@ def linear_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 - return torch.linspace(beta_start, beta_end, timesteps) + return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64) def quadratic_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 - return torch.linspace(beta_start**2, beta_end**2, timesteps) ** 2 + return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2 def sigmoid_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 - betas = torch.linspace(-6, 6, timesteps) + betas = torch.linspace(-6, 6, timesteps, dtype = torch.float64) return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start @@ -368,17 +368,21 @@ class BaseGaussianDiffusion(nn.Module): self.loss_type = loss_type self.loss_fn = loss_fn - self.register_buffer('betas', betas) - self.register_buffer('alphas_cumprod', alphas_cumprod) - self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) + # register buffer helper function to cast double back to float + + register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32)) + + register_buffer('betas', betas) + register_buffer('alphas_cumprod', alphas_cumprod) + register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) - self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) - self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod)) - self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) - self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) + register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) + register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) + register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod)) + register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) + register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) # calculations for posterior q(x_{t-1} | x_t, x_0) @@ -386,13 +390,13 @@ class BaseGaussianDiffusion(nn.Module): # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', posterior_variance) + register_buffer('posterior_variance', posterior_variance) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20))) - self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) - self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) + register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20))) + register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) + register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start diff --git a/setup.py b/setup.py index 8eea324..4789852 100644 --- a/setup.py +++ b/setup.py @@ -10,7 +10,7 @@ setup( 'dream = dalle2_pytorch.cli:dream' ], }, - version = '0.2.8', + version = '0.2.9', license='MIT', description = 'DALL-E 2', author = 'Phil Wang',