mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
in ddim, noise should be predicted after x0 is maybe clipped, thanks to @lukovnikov for pointing this out in another repository
This commit is contained in:
@@ -1281,12 +1281,14 @@ class DiffusionPrior(nn.Module):
|
|||||||
|
|
||||||
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
|
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
|
||||||
|
|
||||||
|
# derive x0
|
||||||
|
|
||||||
if self.predict_x_start:
|
if self.predict_x_start:
|
||||||
x_start = pred
|
x_start = pred
|
||||||
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = pred)
|
|
||||||
else:
|
else:
|
||||||
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred)
|
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred_noise)
|
||||||
pred_noise = pred
|
|
||||||
|
# clip x0 before maybe predicting noise
|
||||||
|
|
||||||
if not self.predict_x_start:
|
if not self.predict_x_start:
|
||||||
x_start.clamp_(-1., 1.)
|
x_start.clamp_(-1., 1.)
|
||||||
@@ -1294,6 +1296,13 @@ class DiffusionPrior(nn.Module):
|
|||||||
if self.predict_x_start and self.sampling_clamp_l2norm:
|
if self.predict_x_start and self.sampling_clamp_l2norm:
|
||||||
x_start = self.l2norm_clamp_embed(x_start)
|
x_start = self.l2norm_clamp_embed(x_start)
|
||||||
|
|
||||||
|
# predict noise
|
||||||
|
|
||||||
|
if self.predict_x_start:
|
||||||
|
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
|
||||||
|
else:
|
||||||
|
pred_noise = pred
|
||||||
|
|
||||||
if time_next < 0:
|
if time_next < 0:
|
||||||
image_embed = x_start
|
image_embed = x_start
|
||||||
continue
|
continue
|
||||||
@@ -2897,16 +2906,25 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
pred, _ = self.parse_unet_output(learned_variance, unet_output)
|
pred, _ = self.parse_unet_output(learned_variance, unet_output)
|
||||||
|
|
||||||
|
# predict x0
|
||||||
|
|
||||||
if predict_x_start:
|
if predict_x_start:
|
||||||
x_start = pred
|
x_start = pred
|
||||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
|
||||||
else:
|
else:
|
||||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||||
pred_noise = pred
|
|
||||||
|
# maybe clip x0
|
||||||
|
|
||||||
if clip_denoised:
|
if clip_denoised:
|
||||||
x_start = self.dynamic_threshold(x_start)
|
x_start = self.dynamic_threshold(x_start)
|
||||||
|
|
||||||
|
# predict noise
|
||||||
|
|
||||||
|
if predict_x_start:
|
||||||
|
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||||
|
else:
|
||||||
|
pred_noise = pred
|
||||||
|
|
||||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||||
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '1.10.4'
|
__version__ = '1.10.5'
|
||||||
|
|||||||
Reference in New Issue
Block a user