Files
Auto-GPT/benchmark/agbenchmark/utils/challenge.py
Reinier van der Leer 25cc6ad6ae AGBenchmark codebase clean-up (#6650)
* refactor(benchmark): Deduplicate configuration loading logic

   - Move the configuration loading logic to a separate `load_agbenchmark_config` function in `agbenchmark/config.py` module.
   - Replace the duplicate loading logic in `conftest.py`, `generate_test.py`, `ReportManager.py`, `reports.py`, and `__main__.py` with calls to `load_agbenchmark_config` function.

* fix(benchmark): Fix type errors, linting errors, and clean up CLI validation in __main__.py

   - Fixed type errors and linting errors in `__main__.py`
   - Improved the readability of CLI argument validation by introducing a separate function for it

* refactor(benchmark): Lint and typefix app.py

   - Rearranged and cleaned up import statements
   - Fixed type errors caused by improper use of `psutil` objects
   - Simplified a number of `os.path` usages by converting to `pathlib`
   - Use `Task` and `TaskRequestBody` classes from `agent_protocol_client` instead of `.schema`

* refactor(benchmark): Replace `.agent_protocol_client` by `agent-protcol-client`, clean up schema.py

   - Remove `agbenchmark.agent_protocol_client` (an offline copy of `agent-protocol-client`).
      - Add `agent-protocol-client` as a dependency and change imports to `agent_protocol_client`.
   - Fix type annotation on `agent_api_interface.py::upload_artifacts` (`ApiClient` -> `AgentApi`).
   - Remove all unused types from schema.py (= most of them).

* refactor(benchmark): Use pathlib in agent_interface.py and agent_api_interface.py

* refactor(benchmark): Improve typing, response validation, and readability in app.py

   - Simplified response generation by leveraging type checking and conversion by FastAPI.
   - Introduced use of `HTTPException` for error responses.
   - Improved naming, formatting, and typing in `app.py::create_evaluation`.
   - Updated the docstring on `app.py::create_agent_task`.
   - Fixed return type annotations of `create_single_test` and `create_challenge` in generate_test.py.
   - Added default values to optional attributes on models in report_types_v2.py.
   - Removed unused imports in `generate_test.py`

* refactor(benchmark): Clean up logging and print statements

   - Introduced use of the `logging` library for unified logging and better readability.
   - Converted most print statements to use `logger.debug`, `logger.warning`, and `logger.error`.
   - Improved descriptiveness of log statements.
   - Removed unnecessary print statements.
   - Added log statements to unspecific and non-verbose `except` blocks.
   - Added `--debug` flag, which sets the log level to `DEBUG` and enables a more comprehensive log format.
   - Added `.utils.logging` module with `configure_logging` function to easily configure the logging library.
   - Converted raw escape sequences in `.utils.challenge` to use `colorama`.
   - Renamed `generate_test.py::generate_tests` to `load_challenges`.

* refactor(benchmark): Remove unused server.py and agent_interface.py::run_agent

   - Remove unused server.py file
   - Remove unused run_agent function from agent_interface.py

* refactor(benchmark): Clean up conftest.py

   - Fix and add type annotations
   - Rewrite docstrings
   - Disable or remove unused code
   - Fix definition of arguments and their types in `pytest_addoption`

* refactor(benchmark): Clean up generate_test.py file

   - Refactored the `create_single_test` function for clarity and readability
      - Removed unused variables
      - Made creation of `Challenge` subclasses more straightforward
      - Made bare `except` more specific
   - Renamed `Challenge.setup_challenge` method to `run_challenge`
   - Updated type hints and annotations
   - Made minor code/readability improvements in `load_challenges`
   - Added a helper function `_add_challenge_to_module` for attaching a Challenge class to the current module

* fix(benchmark): Fix and add type annotations in execute_sub_process.py

* refactor(benchmark): Simplify const determination in agent_interface.py

   - Simplify the logic that determines the value of `HELICONE_GRAPHQL_LOGS`

* fix(benchmark): Register category markers to prevent warnings

   - Use the `pytest_configure` hook to register the known challenge categories as markers. Otherwise, Pytest will raise "unknown marker" warnings at runtime.

* refactor(benchmark/challenges): Fix indentation in 4_revenue_retrieval_2/data.json

* refactor(benchmark): Update agent_api_interface.py

   - Add type annotations to `copy_agent_artifacts_into_temp_folder` function
   - Add note about broken endpoint in the `agent_protocol_client` library
   - Remove unused variable in `run_api_agent` function
   - Improve readability and resolve linting error

* feat(benchmark): Improve and centralize pathfinding

   - Search path hierarchy for applicable `agbenchmark_config`, rather than assuming it's in the current folder.
   - Create `agbenchmark.utils.path_manager` with `AGBenchmarkPathManager` and exporting a `PATH_MANAGER` const.
   - Replace path constants defined in __main__.py with usages of `PATH_MANAGER`.

* feat(benchmark/cli): Clean up and improve CLI

   - Updated commands, options, and their descriptions to be more intuitive and consistent
   - Moved slow imports into the entrypoints that use them to speed up application startup
   - Fixed type hints to match output types of Click options
   - Hid deprecated `agbenchmark start` command
   - Refactored code to improve readability and maintainability
   - Moved main entrypoint into `run` subcommand
   - Fixed `version` and `serve` subcommands
   - Added `click-default-group` package to allow using `run` implicitly (for backwards compatibility)
   - Renamed `--no_dep` to `--no-dep` for consistency
   - Fixed string formatting issues in log statements

* refactor(benchmark/config): Move AgentBenchmarkConfig and related functions to config.py

   - Move the `AgentBenchmarkConfig` class from `utils/data_types.py` to `config.py`.
   - Extract the `calculate_info_test_path` function from `utils/data_types.py` and move it to `config.py` as a private helper function `_calculate_info_test_path`.
   - Move `load_agent_benchmark_config()` to `AgentBenchmarkConfig.load()`.
   - Changed simple getter methods on `AgentBenchmarkConfig` to calculated properties.
   - Update all code references according to the changes mentioned above.

* refactor(benchmark): Fix ReportManager init parameter types and use pathlib

   - Fix the type annotation of the `benchmark_start_time` parameter in `ReportManager.__init__`, was mistyped as `str` instead of `datetime`.
   - Change the type of the `filename` parameter in the `ReportManager.__init__` method from `str` to `Path`.
   - Rename `self.filename` with `self.report_file` in `ReportManager`.
   - Change the way the report file is created, opened and saved to use the `Path` object.

* refactor(benchmark): Improve typing surrounding ChallengeData and clean up its implementation

   - Use `ChallengeData` objects instead of untyped `dict` in  app.py, generate_test.py, reports.py.
   - Remove unnecessary methods `serialize`, `get_data`, `get_json_from_path`, `deserialize` from `ChallengeData` class.
   - Remove unused methods `challenge_from_datum` and `challenge_from_test_data` from `ChallengeData class.
   - Update function signatures and annotations of `create_challenge` and `generate_single_test` functions in generate_test.py.
   - Add types to function signatures of `generate_single_call_report` and `finalize_reports` in reports.py.
   - Remove unnecessary `challenge_data` parameter (in generate_test.py) and fixture (in conftest.py).

* refactor(benchmark): Clean up generate_test.py, conftest.py and __main__.py

   - Cleaned up generate_test.py and conftest.py
      - Consolidated challenge creation logic in the `Challenge` class itself, most notably the new `Challenge.from_challenge_spec` method.
      - Moved challenge selection logic from generate_test.py to the `pytest_collection_modifyitems` hook in conftest.py.
   - Converted methods in the `Challenge` class to class methods where appropriate.
   - Improved argument handling in the `run_benchmark` function in `__main__.py`.

* refactor(benchmark/config): Merge AGBenchmarkPathManager into AgentBenchmarkConfig and reduce fragmented/global state

   - Merge the functionality of `AGBenchmarkPathManager` into `AgentBenchmarkConfig` to consolidate the configuration management.
   - Remove the `.path_manager` module containing `AGBenchmarkPathManager`.
   - Pass the `AgentBenchmarkConfig` and its attributes through function arguments to reduce global state and improve code clarity.

* feat(benchmark/serve): Configurable port for `serve` subcommand

   - Added `--port` option to `serve` subcommand to allow for specifying the port to run the API on.
   - If no `--port` option is provided, the port will default to the value specified in the `PORT` environment variable, or 8080 if not set.

* feat(benchmark/cli): Add `config` subcommand

   - Added a new subcommand `config` to the AGBenchmark CLI, to display information about the present AGBenchmark config.

* fix(benchmark): Gracefully handle incompatible challenge spec files in app.py

   - Added a check to skip deprecated challenges
   - Added logging to allow debugging of the loading process
   - Added handling of validation errors when parsing challenge spec files
   - Added missing `spec_file` attribute to `ChallengeData`

* refactor(benchmark): Move `run_benchmark` entrypoint to main.py, use it in `/reports` endpoint

   - Move `run_benchmark` and `validate_args` from __main__.py to main.py
   - Replace agbenchmark subprocess in `app.py:run_single_test` with `run_benchmark`
   - Move `get_unique_categories` from __main__.py to challenges/__init__.py
   - Move `OPTIONAL_CATEGORIES` from __main__.py to challenge.py
   - Reduce operations on updates.json (including `initialize_updates_file`) outside of API

* refactor(benchmark): Remove unused `/updates` endpoint and all related code

   - Remove `updates_json_file` attribute from `AgentBenchmarkConfig`
   - Remove `get_updates` and `_initialize_updates_file` in app.py
   - Remove `append_updates_file` and `create_update_json` functions in agent_api_interface.py
   - Remove call to `append_updates_file` in challenge.py

* refactor(benchmark/config): Clean up and update docstrings on `AgentBenchmarkConfig`

   - Add and update docstrings
   - Change base class from `BaseModel` to `BaseSettings`, allow extras for backwards compatibility
   - Make naming of path attributes on `AgentBenchmarkConfig` more consistent
   - Remove unused `agent_home_directory` attribute
   - Remove unused `workspace` attribute

* fix(benchmark): Restore mechanism to select (optional) categories in agent benchmark config

* fix(benchmark): Update agent-protocol-client to v1.1.0

   - Fixes issue with fetching task artifact listings
2024-01-02 22:23:09 +01:00

285 lines
10 KiB
Python

import glob
import json
import logging
import math
import os
import subprocess
import sys
from abc import ABC
from pathlib import Path
from typing import Any, ClassVar, List
import openai
import pytest
from colorama import Fore, Style
from agbenchmark.agent_api_interface import run_api_agent
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import ChallengeData, Ground
from agbenchmark.utils.prompts import (
END_PROMPT,
FEW_SHOT_EXAMPLES,
PROMPT_MAP,
SCORING_MAP,
)
logger = logging.getLogger(__name__)
with open(
Path(__file__).parent.parent / "challenges" / "optional_categories.json"
) as f:
OPTIONAL_CATEGORIES: list[str] = json.load(f)["optional_categories"]
class Challenge(ABC):
"""The parent class to all specific challenges classes.
Defines helper methods for running a challenge"""
data: ChallengeData
CHALLENGE_LOCATION: ClassVar[str]
ARTIFACTS_LOCATION: ClassVar[str]
scores: ClassVar[dict[str, Any]] = {} # this is for suites
@staticmethod
def from_challenge_spec(spec_file: Path) -> type["Challenge"]:
challenge_data = ChallengeData.parse_file(spec_file)
challenge_class_name = f"Test{challenge_data.name}"
logger.debug(f"Creating {challenge_class_name} from spec: {spec_file}")
return type(
challenge_class_name,
(Challenge,),
{
"data": challenge_data,
"CHALLENGE_LOCATION": str(spec_file),
"ARTIFACTS_LOCATION": str(spec_file.resolve().parent),
},
)
# Define test method within the dynamically created class
@pytest.mark.asyncio
async def test_method(
self, config: AgentBenchmarkConfig, request: pytest.FixtureRequest
) -> None:
# skip optional categories
self.skip_optional_categories(config)
if os.environ.get("HELICONE_API_KEY"):
from helicone.lock import HeliconeLockManager
HeliconeLockManager.write_custom_property("challenge", self.data.name)
timeout = self.data.cutoff or 60
if request.config.getoption("--nc"):
timeout = 100000
elif cutoff := request.config.getoption("--cutoff"):
timeout = int(cutoff)
await self.run_challenge(config, timeout)
scores = self.get_scores(config.temp_folder)
request.node.answers = (
scores["answers"] if request.config.getoption("--keep-answers") else None
)
del scores["answers"] # remove answers from scores
request.node.scores = scores # store scores in request.node
is_score_100 = 1 in scores["values"]
assert is_score_100
async def run_challenge(self, config: AgentBenchmarkConfig, cutoff: int) -> None:
from agbenchmark.agent_interface import copy_artifacts_into_temp_folder
if not self.data.task:
return
print(
f"{Fore.MAGENTA + Style.BRIGHT}{'='*24} "
f"Starting {self.data.name} challenge"
f" {'='*24}{Style.RESET_ALL}"
)
print(f"{Fore.BLACK}Task: {self.data.task}{Fore.RESET}")
await run_api_agent(self.data, config, self.ARTIFACTS_LOCATION, cutoff)
# hidden files are added after the agent runs. Hidden files can be python test files.
# We copy them in the temporary folder to make it easy to import the code produced by the agent
artifact_paths = [
self.ARTIFACTS_LOCATION,
str(Path(self.CHALLENGE_LOCATION).parent),
]
for path in artifact_paths:
copy_artifacts_into_temp_folder(config.temp_folder, "custom_python", path)
@staticmethod
def get_artifacts_out(
workspace: str | Path | dict[str, str], ground: Ground
) -> List[str]:
if isinstance(workspace, dict):
workspace = workspace["output"]
script_dir = workspace
files_contents = []
for file_pattern in ground.files:
# Check if it is a file extension
if file_pattern.startswith("."):
# Find all files with the given extension in the workspace
matching_files = glob.glob(os.path.join(script_dir, "*" + file_pattern))
else:
# Otherwise, it is a specific file
matching_files = [os.path.join(script_dir, file_pattern)]
for file_path in matching_files:
if ground.eval.type == "python":
result = subprocess.run(
[sys.executable, file_path],
cwd=os.path.abspath(workspace),
capture_output=True,
text=True,
)
if "error" in result.stderr or result.returncode != 0:
print(result.stderr)
assert False, result.stderr
files_contents.append(f"Output: {result.stdout}\n")
else:
with open(file_path, "r") as f:
files_contents.append(f.read())
else:
if ground.eval.type == "pytest":
result = subprocess.run(
[sys.executable, "-m", "pytest"],
cwd=os.path.abspath(workspace),
capture_output=True,
text=True,
)
if "error" in result.stderr or result.returncode != 0:
print(result.stderr)
assert False, result.stderr
files_contents.append(f"Output: {result.stdout}\n")
return files_contents
@staticmethod
def scoring(content: str, ground: Ground) -> float:
print(f"{Fore.BLUE}Scoring content:{Style.RESET_ALL}", content)
if ground.should_contain:
for should_contain_word in ground.should_contain:
if not getattr(ground, "case_sensitive", True):
should_contain_word = should_contain_word.lower()
content = content.lower()
print_content = (
f"{Fore.BLUE}Word that should exist{Style.RESET_ALL}"
f" - {should_contain_word}:"
)
if should_contain_word not in content:
print(print_content, "False")
return 0.0
else:
print(print_content, "True")
if ground.should_not_contain:
for should_not_contain_word in ground.should_not_contain:
if not getattr(ground, "case_sensitive", True):
should_not_contain_word = should_not_contain_word.lower()
content = content.lower()
print_content = (
f"{Fore.BLUE}Word that should not exist{Style.RESET_ALL}"
f" - {should_not_contain_word}:"
)
if should_not_contain_word in content:
print(print_content, "False")
return 0.0
else:
print(print_content, "True")
return 1.0
@classmethod
def llm_eval(cls, content: str, ground: Ground) -> float:
openai.api_key = os.getenv("OPENAI_API_KEY")
if os.getenv("IS_MOCK"):
return 1.0
# the validation for this is done in the Eval BaseModel
scoring = SCORING_MAP[ground.eval.scoring] # type: ignore
prompt = PROMPT_MAP[ground.eval.template].format( # type: ignore
task=cls.data.task, scoring=scoring, answer=ground.answer, response=content
)
if ground.eval.examples:
prompt += FEW_SHOT_EXAMPLES.format(examples=ground.eval.examples)
prompt += END_PROMPT
answer = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": prompt},
],
)
return float(answer["choices"][0]["message"]["content"]) # type: ignore
@classmethod
def get_scores(cls, workspace: Path) -> dict[str, Any]:
scores = []
scores_dict: Any = {}
percentage = None
answers = {}
try:
if cls.data.task == "" and os.getenv("IS_MOCK"):
scores = [1.0]
answers = {"mock": "This is a mock answer"}
elif isinstance(cls.data.ground, Ground):
files_contents = cls.get_artifacts_out(workspace, cls.data.ground)
answers = {"answer": files_contents}
for file_content in files_contents:
score = cls.scoring(file_content, cls.data.ground)
print(f"{Fore.GREEN}Your score is:{Style.RESET_ALL}", score)
scores.append(score)
if cls.data.ground.eval.type == "llm":
llm_eval = cls.llm_eval("\n".join(files_contents), cls.data.ground)
if cls.data.ground.eval.scoring == "percentage":
scores.append(math.ceil(llm_eval / 100))
elif cls.data.ground.eval.scoring == "scale":
scores.append(math.ceil(llm_eval / 10))
print(f"{Fore.GREEN}Your score is:{Style.RESET_ALL}", llm_eval)
scores.append(llm_eval)
except Exception as e:
print("Error getting scores", e)
scores_data = {
"values": scores,
"scores_obj": scores_dict,
"percentage": percentage,
"answers": answers,
}
cls.scores[cls.__name__] = scores_data
return scores_data
def get_dummy_scores(self, test_name: str, scores: dict[str, Any]) -> int | None:
return 1 # remove this once this works
if 1 in scores.get("scores_obj", {}).get(test_name, []):
return 1
return None
@classmethod
def skip_optional_categories(cls, config: AgentBenchmarkConfig) -> None:
challenge_categories = set(c.value for c in cls.data.category)
challenge_optional_categories = challenge_categories & set(OPTIONAL_CATEGORIES)
if challenge_optional_categories and not (
config.categories
and set(challenge_optional_categories).issubset(set(config.categories))
):
pytest.skip(
f"Category {', '.join(challenge_optional_categories)} is optional, "
"and not explicitly selected in the benchmark config."
)