Files
Auto-GPT/benchmark/agbenchmark
Reinier van der Leer 25cc6ad6ae AGBenchmark codebase clean-up (#6650)
* refactor(benchmark): Deduplicate configuration loading logic

   - Move the configuration loading logic to a separate `load_agbenchmark_config` function in `agbenchmark/config.py` module.
   - Replace the duplicate loading logic in `conftest.py`, `generate_test.py`, `ReportManager.py`, `reports.py`, and `__main__.py` with calls to `load_agbenchmark_config` function.

* fix(benchmark): Fix type errors, linting errors, and clean up CLI validation in __main__.py

   - Fixed type errors and linting errors in `__main__.py`
   - Improved the readability of CLI argument validation by introducing a separate function for it

* refactor(benchmark): Lint and typefix app.py

   - Rearranged and cleaned up import statements
   - Fixed type errors caused by improper use of `psutil` objects
   - Simplified a number of `os.path` usages by converting to `pathlib`
   - Use `Task` and `TaskRequestBody` classes from `agent_protocol_client` instead of `.schema`

* refactor(benchmark): Replace `.agent_protocol_client` by `agent-protcol-client`, clean up schema.py

   - Remove `agbenchmark.agent_protocol_client` (an offline copy of `agent-protocol-client`).
      - Add `agent-protocol-client` as a dependency and change imports to `agent_protocol_client`.
   - Fix type annotation on `agent_api_interface.py::upload_artifacts` (`ApiClient` -> `AgentApi`).
   - Remove all unused types from schema.py (= most of them).

* refactor(benchmark): Use pathlib in agent_interface.py and agent_api_interface.py

* refactor(benchmark): Improve typing, response validation, and readability in app.py

   - Simplified response generation by leveraging type checking and conversion by FastAPI.
   - Introduced use of `HTTPException` for error responses.
   - Improved naming, formatting, and typing in `app.py::create_evaluation`.
   - Updated the docstring on `app.py::create_agent_task`.
   - Fixed return type annotations of `create_single_test` and `create_challenge` in generate_test.py.
   - Added default values to optional attributes on models in report_types_v2.py.
   - Removed unused imports in `generate_test.py`

* refactor(benchmark): Clean up logging and print statements

   - Introduced use of the `logging` library for unified logging and better readability.
   - Converted most print statements to use `logger.debug`, `logger.warning`, and `logger.error`.
   - Improved descriptiveness of log statements.
   - Removed unnecessary print statements.
   - Added log statements to unspecific and non-verbose `except` blocks.
   - Added `--debug` flag, which sets the log level to `DEBUG` and enables a more comprehensive log format.
   - Added `.utils.logging` module with `configure_logging` function to easily configure the logging library.
   - Converted raw escape sequences in `.utils.challenge` to use `colorama`.
   - Renamed `generate_test.py::generate_tests` to `load_challenges`.

* refactor(benchmark): Remove unused server.py and agent_interface.py::run_agent

   - Remove unused server.py file
   - Remove unused run_agent function from agent_interface.py

* refactor(benchmark): Clean up conftest.py

   - Fix and add type annotations
   - Rewrite docstrings
   - Disable or remove unused code
   - Fix definition of arguments and their types in `pytest_addoption`

* refactor(benchmark): Clean up generate_test.py file

   - Refactored the `create_single_test` function for clarity and readability
      - Removed unused variables
      - Made creation of `Challenge` subclasses more straightforward
      - Made bare `except` more specific
   - Renamed `Challenge.setup_challenge` method to `run_challenge`
   - Updated type hints and annotations
   - Made minor code/readability improvements in `load_challenges`
   - Added a helper function `_add_challenge_to_module` for attaching a Challenge class to the current module

* fix(benchmark): Fix and add type annotations in execute_sub_process.py

* refactor(benchmark): Simplify const determination in agent_interface.py

   - Simplify the logic that determines the value of `HELICONE_GRAPHQL_LOGS`

* fix(benchmark): Register category markers to prevent warnings

   - Use the `pytest_configure` hook to register the known challenge categories as markers. Otherwise, Pytest will raise "unknown marker" warnings at runtime.

* refactor(benchmark/challenges): Fix indentation in 4_revenue_retrieval_2/data.json

* refactor(benchmark): Update agent_api_interface.py

   - Add type annotations to `copy_agent_artifacts_into_temp_folder` function
   - Add note about broken endpoint in the `agent_protocol_client` library
   - Remove unused variable in `run_api_agent` function
   - Improve readability and resolve linting error

* feat(benchmark): Improve and centralize pathfinding

   - Search path hierarchy for applicable `agbenchmark_config`, rather than assuming it's in the current folder.
   - Create `agbenchmark.utils.path_manager` with `AGBenchmarkPathManager` and exporting a `PATH_MANAGER` const.
   - Replace path constants defined in __main__.py with usages of `PATH_MANAGER`.

* feat(benchmark/cli): Clean up and improve CLI

   - Updated commands, options, and their descriptions to be more intuitive and consistent
   - Moved slow imports into the entrypoints that use them to speed up application startup
   - Fixed type hints to match output types of Click options
   - Hid deprecated `agbenchmark start` command
   - Refactored code to improve readability and maintainability
   - Moved main entrypoint into `run` subcommand
   - Fixed `version` and `serve` subcommands
   - Added `click-default-group` package to allow using `run` implicitly (for backwards compatibility)
   - Renamed `--no_dep` to `--no-dep` for consistency
   - Fixed string formatting issues in log statements

* refactor(benchmark/config): Move AgentBenchmarkConfig and related functions to config.py

   - Move the `AgentBenchmarkConfig` class from `utils/data_types.py` to `config.py`.
   - Extract the `calculate_info_test_path` function from `utils/data_types.py` and move it to `config.py` as a private helper function `_calculate_info_test_path`.
   - Move `load_agent_benchmark_config()` to `AgentBenchmarkConfig.load()`.
   - Changed simple getter methods on `AgentBenchmarkConfig` to calculated properties.
   - Update all code references according to the changes mentioned above.

* refactor(benchmark): Fix ReportManager init parameter types and use pathlib

   - Fix the type annotation of the `benchmark_start_time` parameter in `ReportManager.__init__`, was mistyped as `str` instead of `datetime`.
   - Change the type of the `filename` parameter in the `ReportManager.__init__` method from `str` to `Path`.
   - Rename `self.filename` with `self.report_file` in `ReportManager`.
   - Change the way the report file is created, opened and saved to use the `Path` object.

* refactor(benchmark): Improve typing surrounding ChallengeData and clean up its implementation

   - Use `ChallengeData` objects instead of untyped `dict` in  app.py, generate_test.py, reports.py.
   - Remove unnecessary methods `serialize`, `get_data`, `get_json_from_path`, `deserialize` from `ChallengeData` class.
   - Remove unused methods `challenge_from_datum` and `challenge_from_test_data` from `ChallengeData class.
   - Update function signatures and annotations of `create_challenge` and `generate_single_test` functions in generate_test.py.
   - Add types to function signatures of `generate_single_call_report` and `finalize_reports` in reports.py.
   - Remove unnecessary `challenge_data` parameter (in generate_test.py) and fixture (in conftest.py).

* refactor(benchmark): Clean up generate_test.py, conftest.py and __main__.py

   - Cleaned up generate_test.py and conftest.py
      - Consolidated challenge creation logic in the `Challenge` class itself, most notably the new `Challenge.from_challenge_spec` method.
      - Moved challenge selection logic from generate_test.py to the `pytest_collection_modifyitems` hook in conftest.py.
   - Converted methods in the `Challenge` class to class methods where appropriate.
   - Improved argument handling in the `run_benchmark` function in `__main__.py`.

* refactor(benchmark/config): Merge AGBenchmarkPathManager into AgentBenchmarkConfig and reduce fragmented/global state

   - Merge the functionality of `AGBenchmarkPathManager` into `AgentBenchmarkConfig` to consolidate the configuration management.
   - Remove the `.path_manager` module containing `AGBenchmarkPathManager`.
   - Pass the `AgentBenchmarkConfig` and its attributes through function arguments to reduce global state and improve code clarity.

* feat(benchmark/serve): Configurable port for `serve` subcommand

   - Added `--port` option to `serve` subcommand to allow for specifying the port to run the API on.
   - If no `--port` option is provided, the port will default to the value specified in the `PORT` environment variable, or 8080 if not set.

* feat(benchmark/cli): Add `config` subcommand

   - Added a new subcommand `config` to the AGBenchmark CLI, to display information about the present AGBenchmark config.

* fix(benchmark): Gracefully handle incompatible challenge spec files in app.py

   - Added a check to skip deprecated challenges
   - Added logging to allow debugging of the loading process
   - Added handling of validation errors when parsing challenge spec files
   - Added missing `spec_file` attribute to `ChallengeData`

* refactor(benchmark): Move `run_benchmark` entrypoint to main.py, use it in `/reports` endpoint

   - Move `run_benchmark` and `validate_args` from __main__.py to main.py
   - Replace agbenchmark subprocess in `app.py:run_single_test` with `run_benchmark`
   - Move `get_unique_categories` from __main__.py to challenges/__init__.py
   - Move `OPTIONAL_CATEGORIES` from __main__.py to challenge.py
   - Reduce operations on updates.json (including `initialize_updates_file`) outside of API

* refactor(benchmark): Remove unused `/updates` endpoint and all related code

   - Remove `updates_json_file` attribute from `AgentBenchmarkConfig`
   - Remove `get_updates` and `_initialize_updates_file` in app.py
   - Remove `append_updates_file` and `create_update_json` functions in agent_api_interface.py
   - Remove call to `append_updates_file` in challenge.py

* refactor(benchmark/config): Clean up and update docstrings on `AgentBenchmarkConfig`

   - Add and update docstrings
   - Change base class from `BaseModel` to `BaseSettings`, allow extras for backwards compatibility
   - Make naming of path attributes on `AgentBenchmarkConfig` more consistent
   - Remove unused `agent_home_directory` attribute
   - Remove unused `workspace` attribute

* fix(benchmark): Restore mechanism to select (optional) categories in agent benchmark config

* fix(benchmark): Update agent-protocol-client to v1.1.0

   - Fixes issue with fetching task artifact listings
2024-01-02 22:23:09 +01:00
..
2023-09-13 12:18:04 +02:00
2024-01-02 22:23:09 +01:00
2024-01-02 22:23:09 +01:00

As a user

  1. pip install auto-gpt-benchmarks
  2. Add boilerplate code to run and kill agent
  3. agbenchmark
    • --category challenge_category to run tests in a specific category
    • --mock to only run mock tests if they exists for each test
    • --noreg to skip any tests that have passed in the past. When you run without this flag and a previous challenge that passed fails, it will now not be regression tests
  4. We call boilerplate code for your agent
  5. Show pass rate of tests, logs, and any other metrics

Contributing

Diagrams: https://whimsical.com/agbenchmark-5n4hXBq1ZGzBwRsK4TVY7x

To run the existing mocks

  1. clone the repo auto-gpt-benchmarks
  2. pip install poetry
  3. poetry shell
  4. poetry install
  5. cp .env_example .env
  6. git submodule update --init --remote --recursive
  7. uvicorn server:app --reload
  8. agbenchmark --mock Keep config the same and watch the logs :)

To run with mini-agi

  1. Navigate to auto-gpt-benchmarks/agent/mini-agi
  2. pip install -r requirements.txt
  3. cp .env_example .env, set PROMPT_USER=false and add your OPENAI_API_KEY=. Sset MODEL="gpt-3.5-turbo" if you don't have access to gpt-4 yet. Also make sure you have Python 3.10^ installed
  4. set AGENT_NAME=mini-agi in .env file and where you want your REPORT_LOCATION to be
  5. Make sure to follow the commands above, and remove mock flag agbenchmark
  • To add requirements poetry add requirement.

Feel free to create prs to merge with main at will (but also feel free to ask for review) - if you can't send msg in R&D chat for access.

If you push at any point and break things - it'll happen to everyone - fix it asap. Step 1 is to revert master to last working commit

Let people know what beautiful code you write does, document everything well

Share your progress :)

Dataset

Manually created, existing challenges within Auto-Gpt, https://osu-nlp-group.github.io/Mind2Web/

How do I add new agents to agbenchmark ?

Example with smol developer.

1- Create a github branch with your agent following the same pattern as this example:

https://github.com/smol-ai/developer/pull/114/files

2- Create the submodule and the github workflow by following the same pattern as this example:

https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/pull/48/files

How do I run agent in different environments?

To just use as the benchmark for your agent. pip install the package and run agbenchmark

For internal Auto-GPT ci runs, specify the AGENT_NAME you want you use and set the HOME_ENV. Ex. AGENT_NAME=mini-agi

To develop agent alongside benchmark, you can specify the AGENT_NAME you want you use and add as a submodule to the repo