mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-17 05:54:26 +01:00
clean(autogpt): Remove old plugin system (#7097)
### Background Follow up after merging https://github.com/Significant-Gravitas/AutoGPT/pull/7054, old plugins will no longer be used. ### Changes 🏗️ - Removed all dead code needed to load and use plugins. - Removed `auto-gpt-plugin-template` dependency - Removed `rev=` from `autogpt-forge` dependency (the set `rev` had incompatible `duckduckgo-search` versions) - Kept `--install-plugin-deps` CLI option and dead code associated (may be needed for new plugins)
This commit is contained in:
committed by
GitHub
parent
0014e2ac14
commit
d38e8b8f6c
@@ -44,9 +44,6 @@ OPENAI_API_KEY=your-openai-api-key
|
||||
## AI_SETTINGS_FILE - Specifies which AI Settings file to use, relative to the AutoGPT root directory. (defaults to ai_settings.yaml)
|
||||
# AI_SETTINGS_FILE=ai_settings.yaml
|
||||
|
||||
## PLUGINS_CONFIG_FILE - The path to the plugins_config.yaml file, relative to the AutoGPT root directory. (Default plugins_config.yaml)
|
||||
# PLUGINS_CONFIG_FILE=plugins_config.yaml
|
||||
|
||||
## PROMPT_SETTINGS_FILE - Specifies which Prompt Settings file to use, relative to the AutoGPT root directory. (defaults to prompt_settings.yaml)
|
||||
# PROMPT_SETTINGS_FILE=prompt_settings.yaml
|
||||
|
||||
|
||||
@@ -52,7 +52,6 @@ def bootstrap_agent(task: str, continuous_mode: bool) -> Agent:
|
||||
smart_llm=config.smart_llm,
|
||||
allow_fs_access=not config.restrict_to_workspace,
|
||||
use_functions_api=config.openai_functions,
|
||||
plugins=config.plugins,
|
||||
),
|
||||
prompt_config=agent_prompt_config,
|
||||
history=Agent.default_settings.history.copy(deep=True),
|
||||
|
||||
@@ -4,8 +4,6 @@ from autogpt.agents.agent import Agent, AgentConfiguration, AgentSettings
|
||||
from autogpt.config import AIDirectives, AIProfile, Config
|
||||
from autogpt.core.resource.model_providers import ChatModelProvider
|
||||
from autogpt.file_storage.base import FileStorage
|
||||
from autogpt.logs.config import configure_chat_plugins
|
||||
from autogpt.plugins import scan_plugins
|
||||
|
||||
|
||||
def create_agent(
|
||||
@@ -65,9 +63,6 @@ def _configure_agent(
|
||||
" must be specified"
|
||||
)
|
||||
|
||||
app_config.plugins = scan_plugins(app_config)
|
||||
configure_chat_plugins(app_config)
|
||||
|
||||
agent_state = state or create_agent_state(
|
||||
agent_id=agent_id,
|
||||
task=task,
|
||||
@@ -105,7 +100,6 @@ def create_agent_state(
|
||||
smart_llm=app_config.smart_llm,
|
||||
allow_fs_access=not app_config.restrict_to_workspace,
|
||||
use_functions_api=app_config.openai_functions,
|
||||
plugins=app_config.plugins,
|
||||
),
|
||||
history=Agent.default_settings.history.copy(deep=True),
|
||||
)
|
||||
|
||||
@@ -15,7 +15,6 @@ from typing import (
|
||||
overload,
|
||||
)
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
from colorama import Fore
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
@@ -96,21 +95,6 @@ class BaseAgentConfiguration(SystemConfiguration):
|
||||
summary_max_tlength: Optional[int] = None
|
||||
# TODO: move to ActionHistoryConfiguration
|
||||
|
||||
plugins: list[AutoGPTPluginTemplate] = Field(default_factory=list, exclude=True)
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True # Necessary for plugins
|
||||
|
||||
@validator("plugins", each_item=True)
|
||||
def validate_plugins(cls, p: AutoGPTPluginTemplate | Any):
|
||||
assert issubclass(
|
||||
p.__class__, AutoGPTPluginTemplate
|
||||
), f"{p} does not subclass AutoGPTPluginTemplate"
|
||||
assert (
|
||||
p.__class__.__name__ != "AutoGPTPluginTemplate"
|
||||
), f"Plugins must subclass AutoGPTPluginTemplate; {p} is a template instance"
|
||||
return p
|
||||
|
||||
@validator("use_functions_api")
|
||||
def validate_openai_functions(cls, v: bool, values: dict[str, Any]):
|
||||
if v:
|
||||
|
||||
@@ -135,7 +135,6 @@ class FileManagerComponent(DirectiveProvider, CommandProvider):
|
||||
Returns:
|
||||
str: A message indicating success or failure
|
||||
"""
|
||||
logger.info(f"self: {self}")
|
||||
if directory := os.path.dirname(filename):
|
||||
self.workspace.make_dir(directory)
|
||||
await self.workspace.write_file(filename, contents)
|
||||
|
||||
@@ -37,13 +37,11 @@ from autogpt.config import (
|
||||
from autogpt.core.resource.model_providers.openai import OpenAIProvider
|
||||
from autogpt.core.runner.client_lib.utils import coroutine
|
||||
from autogpt.file_storage import FileStorageBackendName, get_storage
|
||||
from autogpt.logs.config import LoggingConfig, configure_chat_plugins, configure_logging
|
||||
from autogpt.logs.config import configure_logging
|
||||
from autogpt.logs.helpers import print_attribute, speak
|
||||
from autogpt.models.action_history import ActionInterruptedByHuman
|
||||
from autogpt.plugins import scan_plugins
|
||||
from autogpt.utils.exceptions import AgentTerminated, InvalidAgentResponseError
|
||||
from autogpt.utils.utils import DEFAULT_FINISH_COMMAND
|
||||
from scripts.install_plugin_deps import install_plugin_dependencies
|
||||
|
||||
from .configurator import apply_overrides_to_config
|
||||
from .setup import apply_overrides_to_ai_settings, interactively_revise_ai_settings
|
||||
@@ -166,12 +164,6 @@ async def run_auto_gpt(
|
||||
title_color=Fore.YELLOW,
|
||||
)
|
||||
|
||||
if install_plugin_deps:
|
||||
install_plugin_dependencies()
|
||||
|
||||
config.plugins = scan_plugins(config)
|
||||
configure_chat_plugins(config)
|
||||
|
||||
# Let user choose an existing agent to run
|
||||
agent_manager = AgentManager(file_storage)
|
||||
existing_agents = agent_manager.list_agents()
|
||||
@@ -408,11 +400,6 @@ async def run_auto_gpt_server(
|
||||
|
||||
llm_provider = _configure_openai_provider(config)
|
||||
|
||||
if install_plugin_deps:
|
||||
install_plugin_dependencies()
|
||||
|
||||
config.plugins = scan_plugins(config)
|
||||
|
||||
# Set up & start server
|
||||
database = AgentDB(
|
||||
database_string=os.getenv("AP_SERVER_DB_URL", "sqlite:///data/ap_server.db"),
|
||||
@@ -726,12 +713,7 @@ async def get_user_feedback(
|
||||
|
||||
while user_feedback is None:
|
||||
# Get input from user
|
||||
if config.chat_messages_enabled:
|
||||
console_input = clean_input(config, "Waiting for your response...")
|
||||
else:
|
||||
console_input = clean_input(
|
||||
config, Fore.MAGENTA + "Input:" + Style.RESET_ALL
|
||||
)
|
||||
console_input = clean_input(config, Fore.MAGENTA + "Input:" + Style.RESET_ALL)
|
||||
|
||||
# Parse user input
|
||||
if console_input.lower().strip() == config.authorise_key:
|
||||
|
||||
@@ -20,34 +20,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
def clean_input(config: "Config", prompt: str = ""):
|
||||
try:
|
||||
if config.chat_messages_enabled:
|
||||
for plugin in config.plugins:
|
||||
if not hasattr(plugin, "can_handle_user_input"):
|
||||
continue
|
||||
if not plugin.can_handle_user_input(user_input=prompt):
|
||||
continue
|
||||
plugin_response = plugin.user_input(user_input=prompt)
|
||||
if not plugin_response:
|
||||
continue
|
||||
if plugin_response.lower() in [
|
||||
"yes",
|
||||
"yeah",
|
||||
"y",
|
||||
"ok",
|
||||
"okay",
|
||||
"sure",
|
||||
"alright",
|
||||
]:
|
||||
return config.authorise_key
|
||||
elif plugin_response.lower() in [
|
||||
"no",
|
||||
"nope",
|
||||
"n",
|
||||
"negative",
|
||||
]:
|
||||
return config.exit_key
|
||||
return plugin_response
|
||||
|
||||
# ask for input, default when just pressing Enter is y
|
||||
logger.debug("Asking user via keyboard...")
|
||||
|
||||
@@ -215,7 +187,7 @@ def print_motd(config: "Config", logger: logging.Logger):
|
||||
},
|
||||
msg=motd_line,
|
||||
)
|
||||
if is_new_motd and not config.chat_messages_enabled:
|
||||
if is_new_motd:
|
||||
input(
|
||||
Fore.MAGENTA
|
||||
+ Style.BRIGHT
|
||||
|
||||
@@ -7,9 +7,8 @@ import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
from colorama import Fore
|
||||
from pydantic import Field, SecretStr, validator
|
||||
from pydantic import SecretStr, validator
|
||||
|
||||
import autogpt
|
||||
from autogpt.app.utils import clean_input
|
||||
@@ -25,7 +24,6 @@ from autogpt.core.resource.model_providers.openai import (
|
||||
)
|
||||
from autogpt.file_storage import FileStorageBackendName
|
||||
from autogpt.logs.config import LoggingConfig
|
||||
from autogpt.plugins.plugins_config import PluginsConfig
|
||||
from autogpt.speech import TTSConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -33,7 +31,6 @@ logger = logging.getLogger(__name__)
|
||||
PROJECT_ROOT = Path(autogpt.__file__).parent.parent
|
||||
AI_SETTINGS_FILE = Path("ai_settings.yaml")
|
||||
AZURE_CONFIG_FILE = Path("azure.yaml")
|
||||
PLUGINS_CONFIG_FILE = Path("plugins_config.yaml")
|
||||
PROMPT_SETTINGS_FILE = Path("prompt_settings.yaml")
|
||||
|
||||
GPT_4_MODEL = OpenAIModelName.GPT4
|
||||
@@ -54,9 +51,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
|
||||
authorise_key: str = UserConfigurable(default="y", from_env="AUTHORISE_COMMAND_KEY")
|
||||
exit_key: str = UserConfigurable(default="n", from_env="EXIT_KEY")
|
||||
noninteractive_mode: bool = False
|
||||
chat_messages_enabled: bool = UserConfigurable(
|
||||
default=True, from_env=lambda: os.getenv("CHAT_MESSAGES_ENABLED") == "True"
|
||||
)
|
||||
|
||||
# TTS configuration
|
||||
logging: LoggingConfig = LoggingConfig()
|
||||
@@ -181,29 +175,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
|
||||
from_env="USER_AGENT",
|
||||
)
|
||||
|
||||
###################
|
||||
# Plugin Settings #
|
||||
###################
|
||||
plugins_dir: str = UserConfigurable("plugins", from_env="PLUGINS_DIR")
|
||||
plugins_config_file: Path = UserConfigurable(
|
||||
default=PLUGINS_CONFIG_FILE, from_env="PLUGINS_CONFIG_FILE"
|
||||
)
|
||||
plugins_config: PluginsConfig = Field(
|
||||
default_factory=lambda: PluginsConfig(plugins={})
|
||||
)
|
||||
plugins: list[AutoGPTPluginTemplate] = Field(default_factory=list, exclude=True)
|
||||
plugins_allowlist: list[str] = UserConfigurable(
|
||||
default_factory=list,
|
||||
from_env=lambda: _safe_split(os.getenv("ALLOWLISTED_PLUGINS")),
|
||||
)
|
||||
plugins_denylist: list[str] = UserConfigurable(
|
||||
default_factory=list,
|
||||
from_env=lambda: _safe_split(os.getenv("DENYLISTED_PLUGINS")),
|
||||
)
|
||||
plugins_openai: list[str] = UserConfigurable(
|
||||
default_factory=list, from_env=lambda: _safe_split(os.getenv("OPENAI_PLUGINS"))
|
||||
)
|
||||
|
||||
###############
|
||||
# Credentials #
|
||||
###############
|
||||
@@ -231,16 +202,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
|
||||
# Stable Diffusion
|
||||
sd_webui_auth: Optional[str] = UserConfigurable(from_env="SD_WEBUI_AUTH")
|
||||
|
||||
@validator("plugins", each_item=True)
|
||||
def validate_plugins(cls, p: AutoGPTPluginTemplate | Any):
|
||||
assert issubclass(
|
||||
p.__class__, AutoGPTPluginTemplate
|
||||
), f"{p} does not subclass AutoGPTPluginTemplate"
|
||||
assert (
|
||||
p.__class__.__name__ != "AutoGPTPluginTemplate"
|
||||
), f"Plugins must subclass AutoGPTPluginTemplate; {p} is a template instance"
|
||||
return p
|
||||
|
||||
@validator("openai_functions")
|
||||
def validate_openai_functions(cls, v: bool, values: dict[str, Any]):
|
||||
if v:
|
||||
@@ -266,7 +227,6 @@ class ConfigBuilder(Configurable[Config]):
|
||||
for k in {
|
||||
"ai_settings_file", # TODO: deprecate or repurpose
|
||||
"prompt_settings_file", # TODO: deprecate or repurpose
|
||||
"plugins_config_file", # TODO: move from project root
|
||||
"azure_config_file", # TODO: move from project root
|
||||
}:
|
||||
setattr(config, k, project_root / getattr(config, k))
|
||||
@@ -278,12 +238,6 @@ class ConfigBuilder(Configurable[Config]):
|
||||
):
|
||||
config.openai_credentials.load_azure_config(config_file)
|
||||
|
||||
config.plugins_config = PluginsConfig.load_config(
|
||||
config.plugins_config_file,
|
||||
config.plugins_denylist,
|
||||
config.plugins_allowlist,
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .config import configure_chat_plugins, configure_logging
|
||||
from .config import configure_logging
|
||||
from .helpers import user_friendly_output
|
||||
from .log_cycle import (
|
||||
CURRENT_CONTEXT_FILE_NAME,
|
||||
@@ -13,7 +13,6 @@ from .log_cycle import (
|
||||
|
||||
__all__ = [
|
||||
"configure_logging",
|
||||
"configure_chat_plugins",
|
||||
"user_friendly_output",
|
||||
"CURRENT_CONTEXT_FILE_NAME",
|
||||
"NEXT_ACTION_FILE_NAME",
|
||||
|
||||
@@ -8,11 +8,9 @@ import sys
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
from openai._base_client import log as openai_logger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from autogpt.config import Config
|
||||
from autogpt.speech import TTSConfig
|
||||
|
||||
from autogpt.core.configuration import SystemConfiguration, UserConfigurable
|
||||
@@ -34,8 +32,6 @@ DEBUG_LOG_FORMAT = (
|
||||
SPEECH_OUTPUT_LOGGER = "VOICE"
|
||||
USER_FRIENDLY_OUTPUT_LOGGER = "USER_FRIENDLY_OUTPUT"
|
||||
|
||||
_chat_plugins: list[AutoGPTPluginTemplate] = []
|
||||
|
||||
|
||||
class LogFormatName(str, enum.Enum):
|
||||
SIMPLE = "simple"
|
||||
@@ -222,19 +218,3 @@ def configure_logging(
|
||||
|
||||
# Disable debug logging from OpenAI library
|
||||
openai_logger.setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def configure_chat_plugins(config: Config) -> None:
|
||||
"""Configure chat plugins for use by the logging module"""
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Add chat plugins capable of report to logger
|
||||
if config.chat_messages_enabled:
|
||||
if _chat_plugins:
|
||||
_chat_plugins.clear()
|
||||
|
||||
for plugin in config.plugins:
|
||||
if hasattr(plugin, "can_handle_report") and plugin.can_handle_report():
|
||||
logger.debug(f"Loaded plugin into logger: {plugin.__class__.__name__}")
|
||||
_chat_plugins.append(plugin)
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import Any, Optional
|
||||
|
||||
from colorama import Fore
|
||||
|
||||
from .config import SPEECH_OUTPUT_LOGGER, USER_FRIENDLY_OUTPUT_LOGGER, _chat_plugins
|
||||
from .config import SPEECH_OUTPUT_LOGGER, USER_FRIENDLY_OUTPUT_LOGGER
|
||||
|
||||
|
||||
def user_friendly_output(
|
||||
@@ -21,10 +21,6 @@ def user_friendly_output(
|
||||
"""
|
||||
logger = logging.getLogger(USER_FRIENDLY_OUTPUT_LOGGER)
|
||||
|
||||
if _chat_plugins:
|
||||
for plugin in _chat_plugins:
|
||||
plugin.report(f"{title}: {message}")
|
||||
|
||||
logger.log(
|
||||
level,
|
||||
message,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from contextlib import suppress
|
||||
from typing import Any, Sequence, overload
|
||||
|
||||
import numpy as np
|
||||
@@ -51,16 +50,9 @@ async def get_embedding(
|
||||
|
||||
if isinstance(input, str):
|
||||
input = input.replace("\n", " ")
|
||||
|
||||
with suppress(NotImplementedError):
|
||||
return _get_embedding_with_plugin(input, config)
|
||||
|
||||
elif multiple and isinstance(input[0], str):
|
||||
input = [text.replace("\n", " ") for text in input]
|
||||
|
||||
with suppress(NotImplementedError):
|
||||
return [_get_embedding_with_plugin(i, config) for i in input]
|
||||
|
||||
model = config.embedding_model
|
||||
|
||||
logger.debug(
|
||||
@@ -86,13 +78,3 @@ async def get_embedding(
|
||||
)
|
||||
embeddings.append(result.embedding)
|
||||
return embeddings
|
||||
|
||||
|
||||
def _get_embedding_with_plugin(text: str, config: Config) -> Embedding:
|
||||
for plugin in config.plugins:
|
||||
if plugin.can_handle_text_embedding(text):
|
||||
embedding = plugin.handle_text_embedding(text)
|
||||
if embedding is not None:
|
||||
return embedding
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -1,251 +0,0 @@
|
||||
"""Handles loading of plugins."""
|
||||
from typing import Any, Dict, List, Optional, Tuple, TypedDict, TypeVar
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
|
||||
PromptGenerator = TypeVar("PromptGenerator")
|
||||
|
||||
|
||||
class Message(TypedDict):
|
||||
role: str
|
||||
content: str
|
||||
|
||||
|
||||
class BaseOpenAIPlugin(AutoGPTPluginTemplate):
|
||||
"""
|
||||
This is a BaseOpenAIPlugin class for generating AutoGPT plugins.
|
||||
"""
|
||||
|
||||
def __init__(self, manifests_specs_clients: dict):
|
||||
# super().__init__()
|
||||
self._name = manifests_specs_clients["manifest"]["name_for_model"]
|
||||
self._version = manifests_specs_clients["manifest"]["schema_version"]
|
||||
self._description = manifests_specs_clients["manifest"]["description_for_model"]
|
||||
self._client = manifests_specs_clients["client"]
|
||||
self._manifest = manifests_specs_clients["manifest"]
|
||||
self._openapi_spec = manifests_specs_clients["openapi_spec"]
|
||||
|
||||
def can_handle_on_response(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_response method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_response method."""
|
||||
return False
|
||||
|
||||
def on_response(self, response: str, *args, **kwargs) -> str:
|
||||
"""This method is called when a response is received from the model."""
|
||||
return response
|
||||
|
||||
def can_handle_post_prompt(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_prompt method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_prompt method."""
|
||||
return False
|
||||
|
||||
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
|
||||
"""This method is called just after the generate_prompt is called,
|
||||
but actually before the prompt is generated.
|
||||
Args:
|
||||
prompt (PromptGenerator): The prompt generator.
|
||||
Returns:
|
||||
PromptGenerator: The prompt generator.
|
||||
"""
|
||||
return prompt
|
||||
|
||||
def can_handle_on_planning(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_planning method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_planning method."""
|
||||
return False
|
||||
|
||||
def on_planning(
|
||||
self, prompt: PromptGenerator, messages: List[Message]
|
||||
) -> Optional[str]:
|
||||
"""This method is called before the planning chat completion is done.
|
||||
Args:
|
||||
prompt (PromptGenerator): The prompt generator.
|
||||
messages (List[str]): The list of messages.
|
||||
"""
|
||||
|
||||
def can_handle_post_planning(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_planning method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_planning method."""
|
||||
return False
|
||||
|
||||
def post_planning(self, response: str) -> str:
|
||||
"""This method is called after the planning chat completion is done.
|
||||
Args:
|
||||
response (str): The response.
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
return response
|
||||
|
||||
def can_handle_pre_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the pre_instruction method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the pre_instruction method."""
|
||||
return False
|
||||
|
||||
def pre_instruction(self, messages: List[Message]) -> List[Message]:
|
||||
"""This method is called before the instruction chat is done.
|
||||
Args:
|
||||
messages (List[Message]): The list of context messages.
|
||||
Returns:
|
||||
List[Message]: The resulting list of messages.
|
||||
"""
|
||||
return messages
|
||||
|
||||
def can_handle_on_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_instruction method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_instruction method."""
|
||||
return False
|
||||
|
||||
def on_instruction(self, messages: List[Message]) -> Optional[str]:
|
||||
"""This method is called when the instruction chat is done.
|
||||
Args:
|
||||
messages (List[Message]): The list of context messages.
|
||||
Returns:
|
||||
Optional[str]: The resulting message.
|
||||
"""
|
||||
|
||||
def can_handle_post_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_instruction method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_instruction method."""
|
||||
return False
|
||||
|
||||
def post_instruction(self, response: str) -> str:
|
||||
"""This method is called after the instruction chat is done.
|
||||
Args:
|
||||
response (str): The response.
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
return response
|
||||
|
||||
def can_handle_pre_command(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the pre_command method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the pre_command method."""
|
||||
return False
|
||||
|
||||
def pre_command(
|
||||
self, command_name: str, arguments: Dict[str, Any]
|
||||
) -> Tuple[str, Dict[str, Any]]:
|
||||
"""This method is called before the command is executed.
|
||||
Args:
|
||||
command_name (str): The command name.
|
||||
arguments (Dict[str, Any]): The arguments.
|
||||
Returns:
|
||||
Tuple[str, Dict[str, Any]]: The command name and the arguments.
|
||||
"""
|
||||
return command_name, arguments
|
||||
|
||||
def can_handle_post_command(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_command method.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_command method."""
|
||||
return False
|
||||
|
||||
def post_command(self, command_name: str, response: str) -> str:
|
||||
"""This method is called after the command is executed.
|
||||
Args:
|
||||
command_name (str): The command name.
|
||||
response (str): The response.
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
return response
|
||||
|
||||
def can_handle_chat_completion(
|
||||
self, messages: Dict[Any, Any], model: str, temperature: float, max_tokens: int
|
||||
) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the chat_completion method.
|
||||
Args:
|
||||
messages (List[Message]): The messages.
|
||||
model (str): The model name.
|
||||
temperature (float): The temperature.
|
||||
max_tokens (int): The max tokens.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the chat_completion method."""
|
||||
return False
|
||||
|
||||
def handle_chat_completion(
|
||||
self, messages: List[Message], model: str, temperature: float, max_tokens: int
|
||||
) -> str:
|
||||
"""This method is called when the chat completion is done.
|
||||
Args:
|
||||
messages (List[Message]): The messages.
|
||||
model (str): The model name.
|
||||
temperature (float): The temperature.
|
||||
max_tokens (int): The max tokens.
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
|
||||
def can_handle_text_embedding(self, text: str) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the text_embedding method.
|
||||
|
||||
Args:
|
||||
text (str): The text to be convert to embedding.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the text_embedding method."""
|
||||
return False
|
||||
|
||||
def handle_text_embedding(self, text: str) -> list[float]:
|
||||
"""This method is called to create a text embedding.
|
||||
|
||||
Args:
|
||||
text (str): The text to be convert to embedding.
|
||||
Returns:
|
||||
list[float]: The created embedding vector.
|
||||
"""
|
||||
|
||||
def can_handle_user_input(self, user_input: str) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the user_input method.
|
||||
|
||||
Args:
|
||||
user_input (str): The user input.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the user_input method."""
|
||||
return False
|
||||
|
||||
def user_input(self, user_input: str) -> str:
|
||||
"""This method is called to request user input to the user.
|
||||
|
||||
Args:
|
||||
user_input (str): The question or prompt to ask the user.
|
||||
|
||||
Returns:
|
||||
str: The user input.
|
||||
"""
|
||||
|
||||
def can_handle_report(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the report method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the report method."""
|
||||
return False
|
||||
|
||||
def report(self, message: str) -> None:
|
||||
"""This method is called to report a message to the user.
|
||||
|
||||
Args:
|
||||
message (str): The message to report.
|
||||
"""
|
||||
@@ -1,330 +0,0 @@
|
||||
"""Handles loading of plugins."""
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.util
|
||||
import inspect
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, List
|
||||
from urllib.parse import urlparse
|
||||
from zipimport import ZipImportError, zipimporter
|
||||
|
||||
import openapi_python_client
|
||||
import requests
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
from openapi_python_client.config import Config as OpenAPIConfig
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from autogpt.config import Config
|
||||
|
||||
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def inspect_zip_for_modules(zip_path: str) -> list[str]:
|
||||
"""
|
||||
Inspect a zipfile for a modules.
|
||||
|
||||
Args:
|
||||
zip_path (str): Path to the zipfile.
|
||||
debug (bool, optional): Enable debug logging. Defaults to False.
|
||||
|
||||
Returns:
|
||||
list[str]: The list of module names found or empty list if none were found.
|
||||
"""
|
||||
result = []
|
||||
with zipfile.ZipFile(zip_path, "r") as zfile:
|
||||
for name in zfile.namelist():
|
||||
if name.endswith("__init__.py") and not name.startswith("__MACOSX"):
|
||||
logger.debug(f"Found module '{name}' in the zipfile at: {name}")
|
||||
result.append(name)
|
||||
if len(result) == 0:
|
||||
logger.debug(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
|
||||
return result
|
||||
|
||||
|
||||
def write_dict_to_json_file(data: dict, file_path: str) -> None:
|
||||
"""
|
||||
Write a dictionary to a JSON file.
|
||||
Args:
|
||||
data (dict): Dictionary to write.
|
||||
file_path (str): Path to the file.
|
||||
"""
|
||||
with open(file_path, "w") as file:
|
||||
json.dump(data, file, indent=4)
|
||||
|
||||
|
||||
def fetch_openai_plugins_manifest_and_spec(config: Config) -> dict:
|
||||
"""
|
||||
Fetch the manifest for a list of OpenAI plugins.
|
||||
Args:
|
||||
urls (List): List of URLs to fetch.
|
||||
Returns:
|
||||
dict: per url dictionary of manifest and spec.
|
||||
"""
|
||||
# TODO add directory scan
|
||||
manifests = {}
|
||||
for url in config.plugins_openai:
|
||||
openai_plugin_client_dir = f"{config.plugins_dir}/openai/{urlparse(url).netloc}"
|
||||
create_directory_if_not_exists(openai_plugin_client_dir)
|
||||
if not os.path.exists(f"{openai_plugin_client_dir}/ai-plugin.json"):
|
||||
try:
|
||||
response = requests.get(f"{url}/.well-known/ai-plugin.json")
|
||||
if response.status_code == 200:
|
||||
manifest = response.json()
|
||||
if manifest["schema_version"] != "v1":
|
||||
logger.warning(
|
||||
"Unsupported manifest version: "
|
||||
f"{manifest['schem_version']} for {url}"
|
||||
)
|
||||
continue
|
||||
if manifest["api"]["type"] != "openapi":
|
||||
logger.warning(
|
||||
f"Unsupported API type: {manifest['api']['type']} for {url}"
|
||||
)
|
||||
continue
|
||||
write_dict_to_json_file(
|
||||
manifest, f"{openai_plugin_client_dir}/ai-plugin.json"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"Failed to fetch manifest for {url}: {response.status_code}"
|
||||
)
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.warning(f"Error while requesting manifest from {url}: {e}")
|
||||
else:
|
||||
logger.info(f"Manifest for {url} already exists")
|
||||
manifest = json.load(open(f"{openai_plugin_client_dir}/ai-plugin.json"))
|
||||
if not os.path.exists(f"{openai_plugin_client_dir}/openapi.json"):
|
||||
openapi_spec = openapi_python_client._get_document(
|
||||
url=manifest["api"]["url"], path=None, timeout=5
|
||||
)
|
||||
write_dict_to_json_file(
|
||||
openapi_spec, f"{openai_plugin_client_dir}/openapi.json"
|
||||
)
|
||||
else:
|
||||
logger.info(f"OpenAPI spec for {url} already exists")
|
||||
openapi_spec = json.load(open(f"{openai_plugin_client_dir}/openapi.json"))
|
||||
manifests[url] = {"manifest": manifest, "openapi_spec": openapi_spec}
|
||||
return manifests
|
||||
|
||||
|
||||
def create_directory_if_not_exists(directory_path: str) -> bool:
|
||||
"""
|
||||
Create a directory if it does not exist.
|
||||
Args:
|
||||
directory_path (str): Path to the directory.
|
||||
Returns:
|
||||
bool: True if the directory was created, else False.
|
||||
"""
|
||||
if not os.path.exists(directory_path):
|
||||
try:
|
||||
os.makedirs(directory_path)
|
||||
logger.debug(f"Created directory: {directory_path}")
|
||||
return True
|
||||
except OSError as e:
|
||||
logger.warning(f"Error creating directory {directory_path}: {e}")
|
||||
return False
|
||||
else:
|
||||
logger.info(f"Directory {directory_path} already exists")
|
||||
return True
|
||||
|
||||
|
||||
def initialize_openai_plugins(manifests_specs: dict, config: Config) -> dict:
|
||||
"""
|
||||
Initialize OpenAI plugins.
|
||||
Args:
|
||||
manifests_specs (dict): per url dictionary of manifest and spec.
|
||||
config (Config): Config instance including plugins config
|
||||
debug (bool, optional): Enable debug logging. Defaults to False.
|
||||
Returns:
|
||||
dict: per url dictionary of manifest, spec and client.
|
||||
"""
|
||||
openai_plugins_dir = f"{config.plugins_dir}/openai"
|
||||
if create_directory_if_not_exists(openai_plugins_dir):
|
||||
for url, manifest_spec in manifests_specs.items():
|
||||
openai_plugin_client_dir = f"{openai_plugins_dir}/{urlparse(url).hostname}"
|
||||
_meta_option = (openapi_python_client.MetaType.SETUP,)
|
||||
_config = OpenAPIConfig(
|
||||
**{
|
||||
"project_name_override": "client",
|
||||
"package_name_override": "client",
|
||||
}
|
||||
)
|
||||
prev_cwd = Path.cwd()
|
||||
os.chdir(openai_plugin_client_dir)
|
||||
|
||||
if not os.path.exists("client"):
|
||||
client_results = openapi_python_client.create_new_client(
|
||||
url=manifest_spec["manifest"]["api"]["url"],
|
||||
path=None,
|
||||
meta=_meta_option,
|
||||
config=_config,
|
||||
)
|
||||
if client_results:
|
||||
logger.warning(
|
||||
f"Error creating OpenAPI client: {client_results[0].header} \n"
|
||||
f" details: {client_results[0].detail}"
|
||||
)
|
||||
continue
|
||||
spec = importlib.util.spec_from_file_location(
|
||||
"client", "client/client/client.py"
|
||||
)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
|
||||
try:
|
||||
spec.loader.exec_module(module)
|
||||
finally:
|
||||
os.chdir(prev_cwd)
|
||||
|
||||
client = module.Client(base_url=url)
|
||||
manifest_spec["client"] = client
|
||||
return manifests_specs
|
||||
|
||||
|
||||
def instantiate_openai_plugin_clients(manifests_specs_clients: dict) -> dict:
|
||||
"""
|
||||
Instantiates BaseOpenAIPlugin instances for each OpenAI plugin.
|
||||
Args:
|
||||
manifests_specs_clients (dict): per url dictionary of manifest, spec and client.
|
||||
config (Config): Config instance including plugins config
|
||||
debug (bool, optional): Enable debug logging. Defaults to False.
|
||||
Returns:
|
||||
plugins (dict): per url dictionary of BaseOpenAIPlugin instances.
|
||||
|
||||
"""
|
||||
plugins = {}
|
||||
for url, manifest_spec_client in manifests_specs_clients.items():
|
||||
plugins[url] = BaseOpenAIPlugin(manifest_spec_client)
|
||||
return plugins
|
||||
|
||||
|
||||
def scan_plugins(config: Config) -> List[AutoGPTPluginTemplate]:
|
||||
"""Scan the plugins directory for plugins and loads them.
|
||||
|
||||
Args:
|
||||
config (Config): Config instance including plugins config
|
||||
debug (bool, optional): Enable debug logging. Defaults to False.
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, Path]]: List of plugins.
|
||||
"""
|
||||
loaded_plugins = []
|
||||
# Generic plugins
|
||||
plugins_path = Path(config.plugins_dir)
|
||||
|
||||
plugins_config = config.plugins_config
|
||||
# Directory-based plugins
|
||||
for plugin_path in [f for f in Path(config.plugins_dir).iterdir() if f.is_dir()]:
|
||||
# Avoid going into __pycache__ or other hidden directories
|
||||
if plugin_path.name.startswith("__"):
|
||||
continue
|
||||
|
||||
plugin_module_name = plugin_path.name
|
||||
qualified_module_name = ".".join(plugin_path.parts)
|
||||
|
||||
try:
|
||||
plugin = importlib.import_module(qualified_module_name)
|
||||
except ImportError as e:
|
||||
logger.error(
|
||||
f"Failed to load {qualified_module_name} from {plugin_path}: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
if not plugins_config.is_enabled(plugin_module_name):
|
||||
logger.warning(
|
||||
f"Plugin folder {plugin_module_name} found but not configured. "
|
||||
"If this is a legitimate plugin, please add it to plugins_config.yaml "
|
||||
f"(key: {plugin_module_name})."
|
||||
)
|
||||
continue
|
||||
|
||||
for _, class_obj in inspect.getmembers(plugin):
|
||||
if (
|
||||
hasattr(class_obj, "_abc_impl")
|
||||
and AutoGPTPluginTemplate in class_obj.__bases__
|
||||
):
|
||||
loaded_plugins.append(class_obj())
|
||||
|
||||
# Zip-based plugins
|
||||
for plugin in plugins_path.glob("*.zip"):
|
||||
if moduleList := inspect_zip_for_modules(str(plugin)):
|
||||
for module in moduleList:
|
||||
plugin = Path(plugin)
|
||||
module = Path(module)
|
||||
logger.debug(f"Zipped Plugin: {plugin}, Module: {module}")
|
||||
zipped_package = zipimporter(str(plugin))
|
||||
try:
|
||||
zipped_module = zipped_package.load_module(str(module.parent))
|
||||
except ZipImportError as e:
|
||||
logger.error(f"Failed to load {module.parent} from {plugin}: {e}")
|
||||
continue
|
||||
|
||||
for key in dir(zipped_module):
|
||||
if key.startswith("__"):
|
||||
continue
|
||||
|
||||
a_module = getattr(zipped_module, key)
|
||||
if not inspect.isclass(a_module):
|
||||
continue
|
||||
|
||||
if (
|
||||
issubclass(a_module, AutoGPTPluginTemplate)
|
||||
and a_module.__name__ != "AutoGPTPluginTemplate"
|
||||
):
|
||||
plugin_name = a_module.__name__
|
||||
plugin_configured = plugins_config.get(plugin_name) is not None
|
||||
plugin_enabled = plugins_config.is_enabled(plugin_name)
|
||||
|
||||
if plugin_configured and plugin_enabled:
|
||||
logger.debug(
|
||||
f"Loading plugin {plugin_name}. "
|
||||
"Enabled in plugins_config.yaml."
|
||||
)
|
||||
loaded_plugins.append(a_module())
|
||||
elif plugin_configured and not plugin_enabled:
|
||||
logger.debug(
|
||||
f"Not loading plugin {plugin_name}. "
|
||||
"Disabled in plugins_config.yaml."
|
||||
)
|
||||
elif not plugin_configured:
|
||||
logger.warning(
|
||||
f"Not loading plugin {plugin_name}. "
|
||||
f"No entry for '{plugin_name}' in plugins_config.yaml. "
|
||||
"Note: Zipped plugins should use the class name "
|
||||
f"({plugin_name}) as the key."
|
||||
)
|
||||
else:
|
||||
if (
|
||||
module_name := getattr(a_module, "__name__", str(a_module))
|
||||
) != "AutoGPTPluginTemplate":
|
||||
logger.debug(
|
||||
f"Skipping '{module_name}' because it doesn't subclass "
|
||||
"AutoGPTPluginTemplate."
|
||||
)
|
||||
|
||||
# OpenAI plugins
|
||||
if config.plugins_openai:
|
||||
manifests_specs = fetch_openai_plugins_manifest_and_spec(config)
|
||||
if manifests_specs.keys():
|
||||
manifests_specs_clients = initialize_openai_plugins(manifests_specs, config)
|
||||
for url, openai_plugin_meta in manifests_specs_clients.items():
|
||||
if not plugins_config.is_enabled(url):
|
||||
plugin_name = openai_plugin_meta["manifest"]["name_for_model"]
|
||||
logger.warning(
|
||||
f"OpenAI Plugin {plugin_name} found but not configured"
|
||||
)
|
||||
continue
|
||||
|
||||
plugin = BaseOpenAIPlugin(openai_plugin_meta)
|
||||
loaded_plugins.append(plugin)
|
||||
|
||||
if loaded_plugins:
|
||||
logger.info(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
|
||||
for plugin in loaded_plugins:
|
||||
logger.info(f"{plugin._name}: {plugin._version} - {plugin._description}")
|
||||
return loaded_plugins
|
||||
@@ -1,11 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class PluginConfig(BaseModel):
|
||||
"""Class for holding configuration of a single plugin"""
|
||||
|
||||
name: str
|
||||
enabled: bool = False
|
||||
config: dict[str, Any] = None
|
||||
@@ -1,118 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel
|
||||
|
||||
from autogpt.plugins.plugin_config import PluginConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PluginsConfig(BaseModel):
|
||||
"""Class for holding configuration of all plugins"""
|
||||
|
||||
plugins: dict[str, PluginConfig]
|
||||
|
||||
def __repr__(self):
|
||||
return f"PluginsConfig({self.plugins})"
|
||||
|
||||
def get(self, name: str) -> Union[PluginConfig, None]:
|
||||
return self.plugins.get(name)
|
||||
|
||||
def is_enabled(self, name) -> bool:
|
||||
plugin_config = self.plugins.get(name)
|
||||
return plugin_config is not None and plugin_config.enabled
|
||||
|
||||
@classmethod
|
||||
def load_config(
|
||||
cls,
|
||||
plugins_config_file: Path,
|
||||
plugins_denylist: list[str],
|
||||
plugins_allowlist: list[str],
|
||||
) -> "PluginsConfig":
|
||||
empty_config = cls(plugins={})
|
||||
|
||||
try:
|
||||
config_data = cls.deserialize_config_file(
|
||||
plugins_config_file,
|
||||
plugins_denylist,
|
||||
plugins_allowlist,
|
||||
)
|
||||
if type(config_data) is not dict:
|
||||
logger.error(
|
||||
f"Expected plugins config to be a dict, got {type(config_data)}."
|
||||
" Continuing without plugins."
|
||||
)
|
||||
return empty_config
|
||||
return cls(plugins=config_data)
|
||||
|
||||
except BaseException as e:
|
||||
logger.error(
|
||||
f"Plugin config is invalid. Continuing without plugins. Error: {e}"
|
||||
)
|
||||
return empty_config
|
||||
|
||||
@classmethod
|
||||
def deserialize_config_file(
|
||||
cls,
|
||||
plugins_config_file: Path,
|
||||
plugins_denylist: list[str],
|
||||
plugins_allowlist: list[str],
|
||||
) -> dict[str, PluginConfig]:
|
||||
if not plugins_config_file.is_file():
|
||||
logger.warning("plugins_config.yaml does not exist, creating base config.")
|
||||
cls.create_empty_plugins_config(
|
||||
plugins_config_file,
|
||||
plugins_denylist,
|
||||
plugins_allowlist,
|
||||
)
|
||||
|
||||
with open(plugins_config_file, "r") as f:
|
||||
plugins_config = yaml.load(f, Loader=yaml.SafeLoader)
|
||||
|
||||
plugins = {}
|
||||
for name, plugin in plugins_config.items():
|
||||
if type(plugin) is dict:
|
||||
plugins[name] = PluginConfig(
|
||||
name=name,
|
||||
enabled=plugin.get("enabled", False),
|
||||
config=plugin.get("config", {}),
|
||||
)
|
||||
elif isinstance(plugin, PluginConfig):
|
||||
plugins[name] = plugin
|
||||
else:
|
||||
raise ValueError(f"Invalid plugin config data type: {type(plugin)}")
|
||||
return plugins
|
||||
|
||||
@staticmethod
|
||||
def create_empty_plugins_config(
|
||||
plugins_config_file: Path,
|
||||
plugins_denylist: list[str],
|
||||
plugins_allowlist: list[str],
|
||||
):
|
||||
"""
|
||||
Create an empty plugins_config.yaml file.
|
||||
Fill it with values from old env variables.
|
||||
"""
|
||||
base_config = {}
|
||||
|
||||
logger.debug(f"Legacy plugin denylist: {plugins_denylist}")
|
||||
logger.debug(f"Legacy plugin allowlist: {plugins_allowlist}")
|
||||
|
||||
# Backwards-compatibility shim
|
||||
for plugin_name in plugins_denylist:
|
||||
base_config[plugin_name] = {"enabled": False, "config": {}}
|
||||
|
||||
for plugin_name in plugins_allowlist:
|
||||
base_config[plugin_name] = {"enabled": True, "config": {}}
|
||||
|
||||
logger.debug(f"Constructed base plugins config: {base_config}")
|
||||
|
||||
logger.debug(f"Creating plugin config file {plugins_config_file}")
|
||||
with open(plugins_config_file, "w+") as f:
|
||||
f.write(yaml.dump(base_config))
|
||||
return base_config
|
||||
37
autogpts/autogpt/poetry.lock
generated
37
autogpts/autogpt/poetry.lock
generated
@@ -1,16 +1,5 @@
|
||||
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "abstract-singleton"
|
||||
version = "1.0.1"
|
||||
description = "An abstract singleton class."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "abstract_singleton-1.0.1-py3-none-any.whl", hash = "sha256:1f5e2359a609360bc08d975f578cce75a752df06db561efb679e69646199ec1d"},
|
||||
{file = "abstract_singleton-1.0.1.tar.gz", hash = "sha256:d97d26ecbcb7422f78df1b0bca48a03df5ba04cf58844c6da033a7840beaae82"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "agbenchmark"
|
||||
version = "0.0.10"
|
||||
@@ -276,24 +265,6 @@ tests = ["attrs[tests-no-zope]", "zope-interface"]
|
||||
tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"]
|
||||
tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"]
|
||||
|
||||
[[package]]
|
||||
name = "auto_gpt_plugin_template"
|
||||
version = "0.0.2"
|
||||
description = "The template plugin for Auto-GPT."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = []
|
||||
develop = false
|
||||
|
||||
[package.dependencies]
|
||||
abstract-singleton = "*"
|
||||
|
||||
[package.source]
|
||||
type = "git"
|
||||
url = "https://github.com/Significant-Gravitas/Auto-GPT-Plugin-Template"
|
||||
reference = "0.1.0"
|
||||
resolved_reference = "7612a14c629dc64ad870eee4d05850d60e1dd9ce"
|
||||
|
||||
[[package]]
|
||||
name = "autoflake"
|
||||
version = "2.2.1"
|
||||
@@ -338,13 +309,13 @@ uvicorn = "^0.23.2"
|
||||
webdriver-manager = "^4.0.1"
|
||||
|
||||
[package.extras]
|
||||
benchmark = ["agbenchmark @ git+https://github.com/Significant-Gravitas/AutoGPT.git#subdirectory=benchmark"]
|
||||
benchmark = ["agbenchmark @ file:///Users/czerwinski/Library/Caches/pypoetry/virtualenvs/agpt-JtDOdZb2-py3.11/src/AutoGPT/benchmark"]
|
||||
|
||||
[package.source]
|
||||
type = "git"
|
||||
url = "https://github.com/Significant-Gravitas/AutoGPT.git"
|
||||
reference = "ab05b7ae70754c063909"
|
||||
resolved_reference = "ab05b7ae70754c06390982d237d86dc7290cd1aa"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "fd3f8fa5fc86271e4e319258fefdb3065d1aa0d4"
|
||||
subdirectory = "autogpts/forge"
|
||||
|
||||
[[package]]
|
||||
@@ -7263,4 +7234,4 @@ benchmark = ["agbenchmark"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "afa9674e032573e483e977e818766efe18ea4f52efa1ce6dfc71686772371b5b"
|
||||
content-hash = "e6eab5c079d53f075ce701e86a2007e7ebeb635ac067d25f555bfea363bcc630"
|
||||
|
||||
@@ -22,9 +22,8 @@ serve = "autogpt.app.cli:serve"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
auto-gpt-plugin-template = {git = "https://github.com/Significant-Gravitas/Auto-GPT-Plugin-Template", rev = "0.1.0"}
|
||||
# autogpt-forge = { path = "../forge" }
|
||||
autogpt-forge = {git = "https://github.com/Significant-Gravitas/AutoGPT.git", rev = "ab05b7ae70754c063909", subdirectory = "autogpts/forge"}
|
||||
autogpt-forge = {git = "https://github.com/Significant-Gravitas/AutoGPT.git", subdirectory = "autogpts/forge"}
|
||||
beautifulsoup4 = "^4.12.2"
|
||||
boto3 = "^1.33.6"
|
||||
charset-normalizer = "^3.1.0"
|
||||
|
||||
@@ -1,66 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import zipfile
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def install_plugin_dependencies():
|
||||
"""
|
||||
Installs dependencies for all plugins in the plugins dir.
|
||||
|
||||
Args:
|
||||
None
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
plugins_dir = Path(os.getenv("PLUGINS_DIR", "plugins"))
|
||||
|
||||
logger.debug("Checking for dependencies in zipped plugins...")
|
||||
|
||||
# Install zip-based plugins
|
||||
for plugin_archive in plugins_dir.glob("*.zip"):
|
||||
logger.debug(f"Checking for requirements in '{plugin_archive}'...")
|
||||
with zipfile.ZipFile(str(plugin_archive), "r") as zfile:
|
||||
if not zfile.namelist():
|
||||
continue
|
||||
|
||||
# Assume the first entry in the list will be (in) the lowest common dir
|
||||
first_entry = zfile.namelist()[0]
|
||||
basedir = first_entry.rsplit("/", 1)[0] if "/" in first_entry else ""
|
||||
logger.debug(f"Looking for requirements.txt in '{basedir}'")
|
||||
|
||||
basereqs = os.path.join(basedir, "requirements.txt")
|
||||
try:
|
||||
extracted = zfile.extract(basereqs, path=plugins_dir)
|
||||
except KeyError as e:
|
||||
logger.debug(e.args[0])
|
||||
continue
|
||||
|
||||
logger.debug(f"Installing dependencies from '{basereqs}'...")
|
||||
subprocess.check_call(
|
||||
[sys.executable, "-m", "pip", "install", "-r", extracted]
|
||||
)
|
||||
os.remove(extracted)
|
||||
os.rmdir(os.path.join(plugins_dir, basedir))
|
||||
|
||||
logger.debug("Checking for dependencies in other plugin folders...")
|
||||
|
||||
# Install directory-based plugins
|
||||
for requirements_file in glob(f"{plugins_dir}/*/requirements.txt"):
|
||||
logger.debug(f"Installing dependencies from '{requirements_file}'...")
|
||||
subprocess.check_call(
|
||||
[sys.executable, "-m", "pip", "install", "-r", requirements_file],
|
||||
stdout=subprocess.DEVNULL,
|
||||
)
|
||||
|
||||
logger.debug("Finished installing plugin dependencies")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
install_plugin_dependencies()
|
||||
@@ -3,10 +3,8 @@ from __future__ import annotations
|
||||
import os
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import pytest
|
||||
import yaml
|
||||
from pytest_mock import MockerFixture
|
||||
|
||||
from autogpt.agents.agent import Agent, AgentConfiguration, AgentSettings
|
||||
@@ -48,23 +46,8 @@ def storage(app_data_dir: Path) -> FileStorage:
|
||||
return storage
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def temp_plugins_config_file():
|
||||
"""
|
||||
Create a plugins_config.yaml file in a temp directory
|
||||
so that it doesn't mess with existing ones.
|
||||
"""
|
||||
config_directory = TemporaryDirectory()
|
||||
config_file = Path(config_directory.name) / "plugins_config.yaml"
|
||||
with open(config_file, "w+") as f:
|
||||
f.write(yaml.dump({}))
|
||||
|
||||
yield config_file
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def config(
|
||||
temp_plugins_config_file: Path,
|
||||
tmp_project_root: Path,
|
||||
app_data_dir: Path,
|
||||
mocker: MockerFixture,
|
||||
@@ -75,19 +58,8 @@ def config(
|
||||
|
||||
config.app_data_dir = app_data_dir
|
||||
|
||||
config.plugins_dir = "tests/unit/data/test_plugins"
|
||||
config.plugins_config_file = temp_plugins_config_file
|
||||
|
||||
config.noninteractive_mode = True
|
||||
|
||||
# avoid circular dependency
|
||||
from autogpt.plugins.plugins_config import PluginsConfig
|
||||
|
||||
config.plugins_config = PluginsConfig.load_config(
|
||||
plugins_config_file=config.plugins_config_file,
|
||||
plugins_denylist=config.plugins_denylist,
|
||||
plugins_allowlist=config.plugins_allowlist,
|
||||
)
|
||||
yield config
|
||||
|
||||
|
||||
@@ -125,7 +97,6 @@ def agent(
|
||||
smart_llm=config.smart_llm,
|
||||
allow_fs_access=not config.restrict_to_workspace,
|
||||
use_functions_api=config.openai_functions,
|
||||
plugins=config.plugins,
|
||||
),
|
||||
history=Agent.default_settings.history.copy(deep=True),
|
||||
)
|
||||
|
||||
@@ -41,7 +41,6 @@ def dummy_agent(config: Config, llm_provider, memory_json_file):
|
||||
fast_llm=config.fast_llm,
|
||||
smart_llm=config.smart_llm,
|
||||
use_functions_api=config.openai_functions,
|
||||
plugins=config.plugins,
|
||||
),
|
||||
prompt_config=agent_prompt_config,
|
||||
history=Agent.default_settings.history.copy(deep=True),
|
||||
|
||||
Binary file not shown.
@@ -1,274 +0,0 @@
|
||||
"""This is the Test plugin for AutoGPT."""
|
||||
from typing import Any, Dict, List, Optional, Tuple, TypeVar
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
|
||||
PromptGenerator = TypeVar("PromptGenerator")
|
||||
|
||||
|
||||
class AutoGPTGuanaco(AutoGPTPluginTemplate):
|
||||
"""
|
||||
This is plugin for AutoGPT.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._name = "AutoGPT-Guanaco"
|
||||
self._version = "0.1.0"
|
||||
self._description = "This is a Guanaco local model plugin."
|
||||
|
||||
def can_handle_on_response(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_response method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_response method."""
|
||||
return False
|
||||
|
||||
def on_response(self, response: str, *args, **kwargs) -> str:
|
||||
"""This method is called when a response is received from the model."""
|
||||
if len(response):
|
||||
print("OMG OMG It's Alive!")
|
||||
else:
|
||||
print("Is it alive?")
|
||||
|
||||
def can_handle_post_prompt(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_prompt method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_prompt method."""
|
||||
return False
|
||||
|
||||
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
|
||||
"""This method is called just after the generate_prompt is called,
|
||||
but actually before the prompt is generated.
|
||||
|
||||
Args:
|
||||
prompt (PromptGenerator): The prompt generator.
|
||||
|
||||
Returns:
|
||||
PromptGenerator: The prompt generator.
|
||||
"""
|
||||
|
||||
def can_handle_on_planning(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_planning method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_planning method."""
|
||||
return False
|
||||
|
||||
def on_planning(
|
||||
self, prompt: PromptGenerator, messages: List[str]
|
||||
) -> Optional[str]:
|
||||
"""This method is called before the planning chat completeion is done.
|
||||
|
||||
Args:
|
||||
prompt (PromptGenerator): The prompt generator.
|
||||
messages (List[str]): The list of messages.
|
||||
"""
|
||||
|
||||
def can_handle_post_planning(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_planning method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_planning method."""
|
||||
return False
|
||||
|
||||
def post_planning(self, response: str) -> str:
|
||||
"""This method is called after the planning chat completeion is done.
|
||||
|
||||
Args:
|
||||
response (str): The response.
|
||||
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
|
||||
def can_handle_pre_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the pre_instruction method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the pre_instruction method."""
|
||||
return False
|
||||
|
||||
def pre_instruction(self, messages: List[str]) -> List[str]:
|
||||
"""This method is called before the instruction chat is done.
|
||||
|
||||
Args:
|
||||
messages (List[str]): The list of context messages.
|
||||
|
||||
Returns:
|
||||
List[str]: The resulting list of messages.
|
||||
"""
|
||||
|
||||
def can_handle_on_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the on_instruction method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the on_instruction method."""
|
||||
return False
|
||||
|
||||
def on_instruction(self, messages: List[str]) -> Optional[str]:
|
||||
"""This method is called when the instruction chat is done.
|
||||
|
||||
Args:
|
||||
messages (List[str]): The list of context messages.
|
||||
|
||||
Returns:
|
||||
Optional[str]: The resulting message.
|
||||
"""
|
||||
|
||||
def can_handle_post_instruction(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_instruction method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_instruction method."""
|
||||
return False
|
||||
|
||||
def post_instruction(self, response: str) -> str:
|
||||
"""This method is called after the instruction chat is done.
|
||||
|
||||
Args:
|
||||
response (str): The response.
|
||||
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
|
||||
def can_handle_pre_command(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the pre_command method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the pre_command method."""
|
||||
return False
|
||||
|
||||
def pre_command(
|
||||
self, command_name: str, arguments: Dict[str, Any]
|
||||
) -> Tuple[str, Dict[str, Any]]:
|
||||
"""This method is called before the command is executed.
|
||||
|
||||
Args:
|
||||
command_name (str): The command name.
|
||||
arguments (Dict[str, Any]): The arguments.
|
||||
|
||||
Returns:
|
||||
Tuple[str, Dict[str, Any]]: The command name and the arguments.
|
||||
"""
|
||||
|
||||
def can_handle_post_command(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the post_command method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the post_command method."""
|
||||
return False
|
||||
|
||||
def post_command(self, command_name: str, response: str) -> str:
|
||||
"""This method is called after the command is executed.
|
||||
|
||||
Args:
|
||||
command_name (str): The command name.
|
||||
response (str): The response.
|
||||
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
|
||||
def can_handle_chat_completion(
|
||||
self,
|
||||
messages: list[Dict[Any, Any]],
|
||||
model: str,
|
||||
temperature: float,
|
||||
max_tokens: int,
|
||||
) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the chat_completion method.
|
||||
|
||||
Args:
|
||||
messages (Dict[Any, Any]): The messages.
|
||||
model (str): The model name.
|
||||
temperature (float): The temperature.
|
||||
max_tokens (int): The max tokens.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the chat_completion method."""
|
||||
return False
|
||||
|
||||
def handle_chat_completion(
|
||||
self,
|
||||
messages: list[Dict[Any, Any]],
|
||||
model: str,
|
||||
temperature: float,
|
||||
max_tokens: int,
|
||||
) -> str:
|
||||
"""This method is called when the chat completion is done.
|
||||
|
||||
Args:
|
||||
messages (Dict[Any, Any]): The messages.
|
||||
model (str): The model name.
|
||||
temperature (float): The temperature.
|
||||
max_tokens (int): The max tokens.
|
||||
|
||||
Returns:
|
||||
str: The resulting response.
|
||||
"""
|
||||
|
||||
def can_handle_text_embedding(self, text: str) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the text_embedding method.
|
||||
Args:
|
||||
text (str): The text to be convert to embedding.
|
||||
Returns:
|
||||
bool: True if the plugin can handle the text_embedding method."""
|
||||
return False
|
||||
|
||||
def handle_text_embedding(self, text: str) -> list:
|
||||
"""This method is called when the chat completion is done.
|
||||
Args:
|
||||
text (str): The text to be convert to embedding.
|
||||
Returns:
|
||||
list: The text embedding.
|
||||
"""
|
||||
|
||||
def can_handle_user_input(self, user_input: str) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the user_input method.
|
||||
|
||||
Args:
|
||||
user_input (str): The user input.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the user_input method."""
|
||||
return False
|
||||
|
||||
def user_input(self, user_input: str) -> str:
|
||||
"""This method is called to request user input to the user.
|
||||
|
||||
Args:
|
||||
user_input (str): The question or prompt to ask the user.
|
||||
|
||||
Returns:
|
||||
str: The user input.
|
||||
"""
|
||||
|
||||
def can_handle_report(self) -> bool:
|
||||
"""This method is called to check that the plugin can
|
||||
handle the report method.
|
||||
|
||||
Returns:
|
||||
bool: True if the plugin can handle the report method."""
|
||||
return False
|
||||
|
||||
def report(self, message: str) -> None:
|
||||
"""This method is called to report a message to the user.
|
||||
|
||||
Args:
|
||||
message (str): The message to report.
|
||||
"""
|
||||
@@ -1,81 +0,0 @@
|
||||
import pytest
|
||||
|
||||
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
|
||||
|
||||
|
||||
class DummyPlugin(BaseOpenAIPlugin):
|
||||
"""A dummy plugin for testing purposes."""
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dummy_plugin():
|
||||
"""A dummy plugin for testing purposes."""
|
||||
manifests_specs_clients = {
|
||||
"manifest": {
|
||||
"name_for_model": "Dummy",
|
||||
"schema_version": "1.0",
|
||||
"description_for_model": "A dummy plugin for testing purposes",
|
||||
},
|
||||
"client": None,
|
||||
"openapi_spec": None,
|
||||
}
|
||||
return DummyPlugin(manifests_specs_clients)
|
||||
|
||||
|
||||
def test_dummy_plugin_inheritance(dummy_plugin):
|
||||
"""Test that the DummyPlugin class inherits from the BaseOpenAIPlugin class."""
|
||||
assert isinstance(dummy_plugin, BaseOpenAIPlugin)
|
||||
|
||||
|
||||
def test_dummy_plugin_name(dummy_plugin):
|
||||
"""Test that the DummyPlugin class has the correct name."""
|
||||
assert dummy_plugin._name == "Dummy"
|
||||
|
||||
|
||||
def test_dummy_plugin_version(dummy_plugin):
|
||||
"""Test that the DummyPlugin class has the correct version."""
|
||||
assert dummy_plugin._version == "1.0"
|
||||
|
||||
|
||||
def test_dummy_plugin_description(dummy_plugin):
|
||||
"""Test that the DummyPlugin class has the correct description."""
|
||||
assert dummy_plugin._description == "A dummy plugin for testing purposes"
|
||||
|
||||
|
||||
def test_dummy_plugin_default_methods(dummy_plugin):
|
||||
"""Test that the DummyPlugin class has the correct default methods."""
|
||||
assert not dummy_plugin.can_handle_on_response()
|
||||
assert not dummy_plugin.can_handle_post_prompt()
|
||||
assert not dummy_plugin.can_handle_on_planning()
|
||||
assert not dummy_plugin.can_handle_post_planning()
|
||||
assert not dummy_plugin.can_handle_pre_instruction()
|
||||
assert not dummy_plugin.can_handle_on_instruction()
|
||||
assert not dummy_plugin.can_handle_post_instruction()
|
||||
assert not dummy_plugin.can_handle_pre_command()
|
||||
assert not dummy_plugin.can_handle_post_command()
|
||||
assert not dummy_plugin.can_handle_chat_completion(None, None, None, None)
|
||||
assert not dummy_plugin.can_handle_text_embedding(None)
|
||||
|
||||
assert dummy_plugin.on_response("hello") == "hello"
|
||||
assert dummy_plugin.post_prompt(None) is None
|
||||
assert dummy_plugin.on_planning(None, None) is None
|
||||
assert dummy_plugin.post_planning("world") == "world"
|
||||
pre_instruction = dummy_plugin.pre_instruction(
|
||||
[{"role": "system", "content": "Beep, bop, boop"}]
|
||||
)
|
||||
assert isinstance(pre_instruction, list)
|
||||
assert len(pre_instruction) == 1
|
||||
assert pre_instruction[0]["role"] == "system"
|
||||
assert pre_instruction[0]["content"] == "Beep, bop, boop"
|
||||
assert dummy_plugin.on_instruction(None) is None
|
||||
assert dummy_plugin.post_instruction("I'm a robot") == "I'm a robot"
|
||||
pre_command = dummy_plugin.pre_command("evolve", {"continuously": True})
|
||||
assert isinstance(pre_command, tuple)
|
||||
assert len(pre_command) == 2
|
||||
assert pre_command[0] == "evolve"
|
||||
assert pre_command[1]["continuously"] is True
|
||||
post_command = dummy_plugin.post_command("evolve", "upgraded successfully!")
|
||||
assert isinstance(post_command, str)
|
||||
assert post_command == "upgraded successfully!"
|
||||
assert dummy_plugin.handle_chat_completion(None, None, None, None) is None
|
||||
assert dummy_plugin.handle_text_embedding(None) is None
|
||||
@@ -1,125 +0,0 @@
|
||||
import os
|
||||
|
||||
import yaml
|
||||
|
||||
from autogpt.config.config import Config
|
||||
from autogpt.plugins import inspect_zip_for_modules, scan_plugins
|
||||
from autogpt.plugins.plugin_config import PluginConfig
|
||||
from autogpt.plugins.plugins_config import PluginsConfig
|
||||
|
||||
PLUGINS_TEST_DIR = "tests/unit/data/test_plugins"
|
||||
PLUGIN_TEST_ZIP_FILE = "Auto-GPT-Plugin-Test-master.zip"
|
||||
PLUGIN_TEST_INIT_PY = "Auto-GPT-Plugin-Test-master/src/auto_gpt_vicuna/__init__.py"
|
||||
PLUGIN_TEST_OPENAI = "https://weathergpt.vercel.app/"
|
||||
|
||||
|
||||
def test_scan_plugins_openai(config: Config):
|
||||
config.plugins_openai = [PLUGIN_TEST_OPENAI]
|
||||
plugins_config = config.plugins_config
|
||||
plugins_config.plugins[PLUGIN_TEST_OPENAI] = PluginConfig(
|
||||
name=PLUGIN_TEST_OPENAI, enabled=True
|
||||
)
|
||||
|
||||
# Test that the function returns the correct number of plugins
|
||||
result = scan_plugins(config)
|
||||
assert len(result) == 1
|
||||
|
||||
|
||||
def test_scan_plugins_generic(config: Config):
|
||||
# Test that the function returns the correct number of plugins
|
||||
plugins_config = config.plugins_config
|
||||
plugins_config.plugins["auto_gpt_guanaco"] = PluginConfig(
|
||||
name="auto_gpt_guanaco", enabled=True
|
||||
)
|
||||
plugins_config.plugins["AutoGPTPVicuna"] = PluginConfig(
|
||||
name="AutoGPTPVicuna", enabled=True
|
||||
)
|
||||
result = scan_plugins(config)
|
||||
plugin_class_names = [plugin.__class__.__name__ for plugin in result]
|
||||
|
||||
assert len(result) == 2
|
||||
assert "AutoGPTGuanaco" in plugin_class_names
|
||||
assert "AutoGPTPVicuna" in plugin_class_names
|
||||
|
||||
|
||||
def test_scan_plugins_not_enabled(config: Config):
|
||||
# Test that the function returns the correct number of plugins
|
||||
plugins_config = config.plugins_config
|
||||
plugins_config.plugins["auto_gpt_guanaco"] = PluginConfig(
|
||||
name="auto_gpt_guanaco", enabled=True
|
||||
)
|
||||
plugins_config.plugins["auto_gpt_vicuna"] = PluginConfig(
|
||||
name="auto_gptp_vicuna", enabled=False
|
||||
)
|
||||
result = scan_plugins(config)
|
||||
plugin_class_names = [plugin.__class__.__name__ for plugin in result]
|
||||
|
||||
assert len(result) == 1
|
||||
assert "AutoGPTGuanaco" in plugin_class_names
|
||||
assert "AutoGPTPVicuna" not in plugin_class_names
|
||||
|
||||
|
||||
def test_inspect_zip_for_modules():
|
||||
result = inspect_zip_for_modules(str(f"{PLUGINS_TEST_DIR}/{PLUGIN_TEST_ZIP_FILE}"))
|
||||
assert result == [PLUGIN_TEST_INIT_PY]
|
||||
|
||||
|
||||
def test_create_base_config(config: Config):
|
||||
"""
|
||||
Test the backwards-compatibility shim to convert old plugin allow/deny list
|
||||
to a config file.
|
||||
"""
|
||||
config.plugins_allowlist = ["a", "b"]
|
||||
config.plugins_denylist = ["c", "d"]
|
||||
|
||||
os.remove(config.plugins_config_file)
|
||||
plugins_config = PluginsConfig.load_config(
|
||||
plugins_config_file=config.plugins_config_file,
|
||||
plugins_denylist=config.plugins_denylist,
|
||||
plugins_allowlist=config.plugins_allowlist,
|
||||
)
|
||||
|
||||
# Check the structure of the plugins config data
|
||||
assert len(plugins_config.plugins) == 4
|
||||
assert plugins_config.get("a").enabled
|
||||
assert plugins_config.get("b").enabled
|
||||
assert not plugins_config.get("c").enabled
|
||||
assert not plugins_config.get("d").enabled
|
||||
|
||||
# Check the saved config file
|
||||
with open(config.plugins_config_file, "r") as saved_config_file:
|
||||
saved_config = yaml.load(saved_config_file, Loader=yaml.SafeLoader)
|
||||
|
||||
assert saved_config == {
|
||||
"a": {"enabled": True, "config": {}},
|
||||
"b": {"enabled": True, "config": {}},
|
||||
"c": {"enabled": False, "config": {}},
|
||||
"d": {"enabled": False, "config": {}},
|
||||
}
|
||||
|
||||
|
||||
def test_load_config(config: Config):
|
||||
"""
|
||||
Test that the plugin config is loaded correctly from the plugins_config.yaml file.
|
||||
"""
|
||||
# Create a test config and write it to disk
|
||||
test_config = {
|
||||
"a": {"enabled": True, "config": {"api_key": "1234"}},
|
||||
"b": {"enabled": False, "config": {}},
|
||||
}
|
||||
with open(config.plugins_config_file, "w+") as f:
|
||||
f.write(yaml.dump(test_config))
|
||||
|
||||
# Load the config from disk
|
||||
plugins_config = PluginsConfig.load_config(
|
||||
plugins_config_file=config.plugins_config_file,
|
||||
plugins_denylist=config.plugins_denylist,
|
||||
plugins_allowlist=config.plugins_allowlist,
|
||||
)
|
||||
|
||||
# Check that the loaded config is equal to the test config
|
||||
assert len(plugins_config.plugins) == 2
|
||||
assert plugins_config.get("a").enabled
|
||||
assert plugins_config.get("a").config == {"api_key": "1234"}
|
||||
assert not plugins_config.get("b").enabled
|
||||
assert plugins_config.get("b").config == {}
|
||||
@@ -33,7 +33,6 @@ Configuration is controlled through the `Config` object. You can set configurati
|
||||
- `OPENAI_API_KEY`: *REQUIRED*- Your [OpenAI API Key](https://platform.openai.com/account/api-keys).
|
||||
- `OPENAI_ORGANIZATION`: Organization ID in OpenAI. Optional.
|
||||
- `PLAIN_OUTPUT`: Plain output, which disables the spinner. Default: False
|
||||
- `PLUGINS_CONFIG_FILE`: Path of the Plugins Config file relative to the AutoGPT root directory. Default: plugins_config.yaml
|
||||
- `PROMPT_SETTINGS_FILE`: Location of the Prompt Settings file relative to the AutoGPT root directory. Default: prompt_settings.yaml
|
||||
- `REDIS_HOST`: Redis Host. Default: localhost
|
||||
- `REDIS_PASSWORD`: Redis Password. Optional. Default:
|
||||
|
||||
Reference in New Issue
Block a user